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Hierarchy of protein structure

R. JAENICKE

Quaternary structure aM o M,

Tertiary structure

—
Domains
Super secondary structure & ///

Secondary structure

Amino acid sesquance

FiG. 3. Hierarchy of protein structure and protein folding. The one-dimensional primary structure

(esee) determines the folding and association of globular proteins. Next-neighbor (short-range)

interactions at the secondary structural level are supplemented by long-range interactions causing

docking and merging of structural motifs and domains (supersecondary structure and tertiary
structure).



A clever person solves a problem. A
wise person avoids it.

— Albert Einstein —
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ANAAITIAQXH TQN ITPQTEINQN
& O “KQAIKAY” THX ANAAITTAQXHX

« Anfinsen, dekaetio 1960°s: H molvmlokn
TPLOOLAGTUTY] OOU) TOV TPOTEWVIKOV
LOPIOV  K®OIKOTOLEITUL  OTTOKAEIGTIKA
OTIC OAANAOVYIES TOV OULVOEEMV TOVG
KOL Ol  TOALTEMTOIKEG  OAVLGIOEC
OUTAMVOLY QU TOVOLLO.

o https://youtu.be/pZeeOXCCqH4

« H owAevkavon 7100 “KOOWKE” 1OV
EAEYYEL TNV OL00IKOGIO avodimAwong —
POEVTEPO  MEPOS  TOV  YEVETIKOV
KOOWKO”-, NTOV Kol €lvol puo omod TIC
LEYOADTEPEC TPOKANGCELS TNG UOPLUKNG
Broroyiac.



https://youtu.be/pZee0XCCqH4

TO IIEAIO THX ANAAITIAQXHY TQN
[TPQTEINQN XHMEPA

e IToAvdpOuec Oe@pPNTIKEC/VTOAOYIGTIKEC KOl TTELPOUATIKES
LEAETEC TNG OVOOITAMONC TPOTEIVOV £YOVV TPOYWOPNGEL
OTNUOVTIKA 7o TEPOL atd oL evprpata Tov Anfinsen.

e 210 Covtavd KOTTOPO, M avadimAmwon cvuPaivel oe €va
oOVOETO TEPIPAAAOV, KOl GE OPIGUEVEC TEPITTMGELS UTOPEL
Vo amOTUYEL 00MNywvtog o€ AXBOC avodimAmon, 1 G€
GYNUOTIGUO GLUGCOUATOUATOV 1] CAULAOEWOV vov. Ot
TEPIMTOGEI, OLTEC GYETICOVTOUL UE MO GEWPA coPapmv
acOEVELDV, T OPKETOV VEVPOEKPVAIGTIKOV AGOEVEIDV.

e H peAétm ¢ avaoimiowone mpwteivov amotelel Paciko
TOUEN TNC LOPLOKNG ProAoyiag, Tng ProiaTpiknc Epsvvag Kot
G Proteyvoroyiag.



Important issues (1):
Folding in vivo vs. folding In vitro
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Fic. 2. Co-transtational folding of the nascent IgG heavy chains in mouse myeloma cells (MPC 1)

indicating co-transiational modification eveals. (1) cleavage of signal peptide (v ), (2)formation of,

intrachain disulfide bonds: (3) formation of interchain cysicine bridges with light chain (indicated by

thick line): (4) transfer of core oligosuccharide (CHO) to Asn-acceptor (X). About half of the nascent

heavy chain forms an interchain disulfide bond with a complete light chain before heavy chain A

completion and release from the polysome (from Bergman and Kuehl, 197%¢).

FiG. |. Folding in vive and folding in ritre. A. Ribosomes moving along the m-RNA in 5= 3" direction

refease the growing polypeptide chain. Folding may occur either co-translationally (ie. as a

“yectorial” process, from the N- to the C-terminus) or post-translationally. as in B. B. Unfolding and

refolding of a single-chain, one domain protein demonstrating the non-vectorial character of in citre
reconstilution.




Protein Folding vs. Protein
Assoclation

» Folding: a) Spontaneous Acquisition of 3D-structure
and the capacity to form higher-order structures b)
Spatial arrangement of polypeptide chain backbone

 Association: Formation of stoichiometrically and
spatially well defined quaternary structure of
oligomeric & multimeric proteins



Important i1ssues (summary)

« Thermodynamic vs. kinetic control of folding

 Unique protein structure vs. a dynamic,
fluctuating system (breathing motions etc)

» Role of water & amino acid properties



OI Z®AIPIKEX ITPQTEINEY
EINAI OPIAKA XTA®EPEX

Folded & unfolded proteins:

The polypeptide has
considerable conformational
flexibility



Requirements for the folded state

¢ TO MONTEAO TQN 2 KATAZTAXZEQN (2-STATE-MODEL)

N > U

(native) (unfolded)
AG = 15 keal/mol
ExzEy = 107 keal/mol

H xataoraon U suvositar and v tepaotia evrponia Siapdpowong
™¢ H xaraoraon N suvoesitar and éva mwodid peyaro apibpé acbevov
aAAASTIOPAGEMV TOV SPOVV OPMG TAVTOHYPOVE KAL CUVEPYATIKE.



ENEPI'EIAKOI ITAPAT'ONTEXZ XTHN
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KINHTIKOI ITAPAT'ONTEX EINAI
HMANTIKOI I'TA THN ANAAIIIAQXH

—= ( F(Q)

Cyrus Levinthal estimation: 1048 yrs for the folding process to search
all possible conformations for a 150 aa protein with1 ps steps (age of
the universe 13.7x10° yrs!).

— folding pathways (novomdtio ovadiniwong) ?



Requirements for folded state

 For a protein to fold, the folded state must be
Kinetically accessible and have lower free energy than
the unfolded state. Free energies are determined by all
the physical interactions that take place within the
molecule and the solvent plus entropic

considerations.



EXPERIMENTAL APPROACHES TO THE FOLDING AND ASSOCIATION OF PROTEINS

Equilibirum measurements

State of association Electron microscopy, ultracentrifugation, (elastic and inelastic) light
scattering, gel permeation chromatography, SDS-polyacrylamide gel
electrophoresis (with and without cross-linking)

Conformation Spectroscopy (absorption, fluorescence, optical rotatory dispersion,
circular dichroism, nuclear magnetic resonance), hydrogen—
deuterium-(tritium) exchange, stability towards denaturation or
proteolysis, binding of ligands (coenzymes, substrates, etc.),® chemical
modification (“group specific labels™)

Function (activity) Enzymatic assays, ligand binding (affinity chromatography)
Kinetic measurementst

Assembly (association) Turbidity. light scattering, chemical cross-linking, hybridization
Folding Spectroscopy (absorption, fluorescence, circular dichroism),

hydrogen-deuterium exchange, limited proteolysis (fragment analysis
using gel electrophoresis). ligand binding (antibodies, allosteric effectors,
etc.)*

Function (activity) Enzymatic assays, ligand binding (coenzymes, substrates)*

* Ligand binding may cause artifacts by shifting equilibria or stabilizing intermediates.
t Depending on the time range, methods include manual mixing, stopped flow, quench stopped flow (double
jump), relaxation techniques (temperature jump, pressure jump, etc).

Stability data and association enthalpies may be deduced directly from calorimetry.

Frequently refolding studies are very informative; agreement of thermodynamic/
Kinetic data?



Refolding experiments
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Denaturants & folding by altering
the environment

Guanidinium chloride, urea:
they solvate almost equally
all parts of the protein

8 &

Fluorescence mensty @

N> U

288 %

A +~ + + The GuHCl-induced unfolding transition of

1 yeast phosphoglycerate kinase detected by the fluo-
rescence intensity of 340 nm (@) and circular dichro-
ism molar ellipticity at 220 nm (O ). The experimental
data are shown at the top; the straight lines show the
effects of GuHCI on the spectral properties of the

folded state at low concentrations, and on the un-
folded state at high concentrations. The same effects
are assumed throughout the transition region. Cor- 6 N — 0
recting for this, the fraction of unfolding indicated by f —_

the two speciral measurements is plotted in the lower u 0y — 6
half. The two curves coincide and are consistent with N U
a two-state equilibrium unfolding transition. (From

<
-
Fracton as U

Nojima et al. (19].)




Energetics of folding
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Highest stability (lowest AG) at about 5°C; pH is
Important for the stability of the folded state because
most proteins are ionized.



OI EYIIAAXTEX XOAIPEX (MOLTEN GLOBULES)
EINAI ENATAMEXZA THX ITIOPEIAX
ANAAITTAQXHY
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TO “OAYIMO” TQAN YAPOD®OBIKQN OMAAQN
EINAI KPIXIMO BHMA XTHN ANAAITIAQXH
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AITAA & TIOAAAITIAA MONOITATIA
NAAITIAQXHX




XXHMATIXMOXZ 2QYXTON S-S AEZMQN KATA

THN AIAAIKAXIA ANAAITIAQXH
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OPIXMENA ENZYMA YIIOBOH®OYN TON
XXHMATIZEMO XQXTQN S-S AEXMQON KATA THN
ANAAITTIAQXH
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1ov DsbA, T0 07T0L0 XUTAAVEL T1) ONULOVO- N (305 5151)
yie ®on v emavedtenditon dtoovAgLot-

xov Ocopmv. To EVEUHO UVUOLITAMVETUL OF
OV0 ETAQUTELES, L ETUAQATEL TOV JTEQL-
AUUPAVEL TTEVTE U-EALZES (TTQAOWVO) #UL L
OEVTEQY) TOV £1£L OO TAQOUOLL LLE AUTHV
™S BeLopedosivng (neveseot). H apvoteht-
AN ETEATUON (UITAE) OEV ELVUL TTUOOVO 0T
Bero0ed0sivn. (TTpoouRpoopevn wtod Tovs J.
L. Martin et al., Nature 365: 464-468. 1993.)



[ZXOMEPIQ>XH KATAAOIITIOQN ITPOAINHXZ KAI
TAXYTHTA TTPQTEINIKHYX ANAAITIAQXHX

trans cis trans cis

(@) O TEATLOWAEZ OUADES PTOQONY VIL VIODETHEO LY OV OLUPOQETIAES OTEQEOUTASELS, TV trans #uL T cis. STV
trans-noogn ot opdes C=0 »ow N-H dtevbetrovvrat 1002 aviiletes zatevivoetg, evo ot Cis-pooq drevdetoliviat 100g
v DU zaTevBuvon, K 1o TeQLooOTeEQa TETTIDL 1) [rans-poog eival meQimon 1,000 oQEs 10 oTaten wrd T cis-pogn.
Oray 10 SENTEQO ZATHAOLTO OF V(L TETTIOW EivOL 1) TTOOAIVY, 1 1rans-1opg ) ELVOL HOVO TTEQUTOL TEGOEQIS (POQES TTLO
OrebEON GO T CIs-Poo@n. TIETTIOW e CIS-TTQOALVY) CUVUVTOVTOL 08 TOAAES TQMTETVES,

Isomerization of proline residues can be
the rate-limiting step in protein folding

o\ | KYKAO®IAINH (ITPOITYAO-
o 2\ TEITIAIKH ISOMEPAXH)

e

21594 GARLAND PUBLISHING INC
A member of ke Teylor & Framds Grouy



Pro-1somerization

* The UoN equilibration
fits a 2 state-model on
thermodynamic
criteria, while the
Kinetics of the U-N
transition show higher
complexity requiring
more than two species

F10.17. Schematic drawing of the backbone of ribonuclesse A and ribonuciesse S, demonstrating the
positians of praline residues and the site of sublilisn cleavage. (Adapied from Richardeon, 1981).

4 Pro, with Pro93 & Prol14
are cis in the native state



Disulfide bonds increase protein stability
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Stabilizing the dipoles of a-helices increases

N

— 4

C

Fig. 6. A schematic drawing of the peptide dipole
moments in an c-helix. The entire helix has a dipole
moment with the positive pole at the N-terminus and
the negative end at the Cterminus. (Adapted from
Hol [63].)

stability

Ser 38 —=Asp



The folded state has frequently a
flexible structure
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Flexibility of the folded state iIs

essential for function




Structural Dynamics

Biological life depends on motion, and this manifests itself in proteins that display
motion over a formidable range of time scales (femtoseconds to micro- or
milliseconds.

Outstanding challenge: a quantitative understanding of the linkages among protein
structure, dynamics, and function.

These linkages are becoming increasingly explorable due to conceptual and
methodological advances. BUT: the research guestions in the field are becoming
increasingly complex (e.g. the mechanistic understanding of high-order interaction
networks in allosteric signal propagation through a protein matrix). In analogy to
the “protein folding problem”, the way forward lies in the successful integration of
experiment and computation, while utilizing the rapid expansion of sequence and
structure space.

Looking forward, the future is bright, and we are in a period where we are on the
doorstep to, at least in part, comprehend the importance of dynamics for biological
function.



Structural Dynamics




Structural Dynamics
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IIpmTeivikeg aAANAOVYIES

e (o mePT000 MAVE amd 3 OICEKATOUUVPIN ¥POVIOL UL
LEYAAN TOIKIAMO oo HopLo TPOTEIVOV £xel eCeAyDel yia
TNV  EKTEAECT] TOV TOADTAOK®MV AELTOLPYLOV TOV
KLTTapOV Kol opyovicpuwv. ITiotevetar o011 avtd tO
uopta €yovv eCeMybel amd Tuyoion HETOAAOEN TWV
YOVIOLOV KOl QUGIKY] EMAOYY] EKEIVOV TOV TPOIOVTOV
TOUC OV £YOVV OTTOKTNGEL KOOI AEITOVPYIKT) VITEPOYN
o€ oyéon ue v emPioon twv opyavicumv. Me tnv
EAEVLOT TNG HOPLIKNG VYEVETIKNG KOl TOV TEYVIKOV
KA®VOTOINGNC KOl  E1GOYOYNS YOVIOI®WV, UTOIVOULUE
TOPO GE WO €MOYN YEVETIKNG EKUETAAAELGNG 1TNC
TANPOPOPLOC TOV TEPLEYETUL OTIC OAANAOVYiEC GAA®V
opyaviocu®v, 6€ Pabud mov MNtov aotovonto poAlg 20
YPOVIOL TTPLV.




Exploring the sequence/structure space &
the protein folding problem

The size of the protein sequence space is The known protein structure
astronomical space is limited



OMOAOTIEZ ITPQTEINEX EXOYN
>YNTHPHMENOYX AOMIKOYZX ITYPHNEX KAI
METABAHTEZX ITEPIOXEY STPODOQN

3.0 l f f I
o,
S
= .
=241 T
= 'y
Figure 17.1 The relation between the divergence of amino acid 2 -
sequence and three-dimensional structure of the core region of s 18T et T
homologous proteins. Known structures of 32 pairs of homologous = R
proteins such as globins, serine proteinases, and immunoglobulin %24 . 1
domains have been compared. The root mean square deviation of the = .
main-chain atoms of the core regions is plotted as a function of amino E 06 ., 1
acid homology (red dots). The curve represents the best fit of the dots to E L
an exponential function. Pairs with high sequence homology are almost 4
identical in three-dimensional structure, whereas deviations in atomic 0.0 ) ;

positions for pairs of low homology are of the order of 2 A, 100 80 60 f;{] 20 0
(From C. Chothia and A. Lesk, EMBO J. 5: 823-826, 1986.) Percent residue idenlily



H opoAoyio aAANAOVYLOV AUIVOEEDY VTTOONAMVEL
OLOLOTNTOL GTNV OOWUT KOl GTIC AEITOVPYIEC

Human-ZCr MATGOKLMRAVRVFEFGGPEVLKLRSDIAVPIPKDHOVLIKVHACGVNPVETY IRSGTYS
Ecoli-QOR ------ MATRIEFHKHGGPEVLQA - VEFTPADPAENETQVENKAIGINFIDTYIRSGLYP
_ 2 rrEwaw i P S TS 2 > T
Human -ZCr RKPLLPYTPGSDVAGVIEAVGDNASAFKKGDRVFTSSTISGGYAEYALAADHTVYKLPEK
Ecoli-QOR ~PPSLPSGLGTEAAGIVSKVGSGVKHIKAGDRVVYAQSALGAYSSVHNI IADKAATLPAA
. e L B O o wrae ok . e
Human-2ZCr LDFKQGAAIGIPYFTAYRALIHSACVKAGESVLVHGASGGVGLAACQIARAYGLKILGTA
Ecoli-QOR ISFEQAAASFLKGLTVYYLLRKTYEIKPDEQFLFHAAAGGVGLIACOWAKALGAKLIGTV
v owe LI I S R I I R S 22t 2 2 T R RS
Human-zZCr GTEEGQKIVLONGAHEVFNHREVNY IDKIKKYVGEKGIDIIIEMLANVNLSKDLSLLSHG
Ecoli-QOR GTAQKAQSALKAGAWQVINYREEDLVERLKEITGGKKVRVVYDSVGRDTWERSLDCLORR
L O A e ® W R o e s .
Human-zCr GRVIVVG-SRGTIEINPRDTMAKES - - - - SIIGVTLFSSTKEEFQOYAARLOAGME IGWL
Ecoli-QOR GLMVSFGNSSGAVTGVNLGILNQKGSLYVTRPSLOGY I TTREELTEASNELFSLIASGVT
. * v v S : R T2 U A IR,
Human-2Cr KPVIGSQ- -YPLEKVAEAHENT THGSGATGKMILLL
Ecoli-QOR KVDVAEQQKYPLXDAQRAHE-ILESRATQGSSLLIP
L x men LL R T

Figure 7.2 Optimal global sequence alignment. Alignment of the amino acid sequences of human
C-crystallin (Swiss-Prot Q08257) and E. coli quinone oxidoreductase (Swiss-Prot P28304). It is an opti-
mal global alignment produced by the CLUSTAL W program (Higgins et al., 1996). Identical residues
are marked by asterisks below the alignment, while dots indicate conserved residues.

F12 ERFIHEN K o Catalytic }

PLAT =——{FilEN kK H Kk = Catayc |

Figure 7.3 Modular structure of two proteins involved in blood clotting. Schematic representation of
the modular structure of human tissue plasminogen activator and coagulation factor XII. The module
labeled Catalytic are shared by several proteins involved in blood clotting. F1 and F2 are frequently
repeated units that were first seen in fibronectin. E is a module resembling epidermal growth factor. A
module known as a “kringle domain” is denoted K.
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Figure 7.4 Dot matrix sequence comparison, Dot matrix comparison of the amino acid sequenc
human coagulation factor Xil (F12; Swiss-Prot P00748) and tissue plasminogen activator (PLAT; St
Prot P00750) and proteins. The figure was generated using the DOTTER program (Sennhammai
Durban, 1396).



2VVTNPNUEVA TPOTVTO GTIC TPWTEIVIKES AAANAOVYiEC:

OLLOLOTNTO GTNV OOUT KOl GTIC AELTOVPYIES
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Many different amino acid sequences give

For a 150 aa domain,
there are 2010 or
roughly 10%%° possible
sequences, of which 1038
members can be
extracted that have less
than 20% aa sequence
homology. Assuming
that 1 out of a billion
sequences folds, we are
left with 102° folded
possible proteins.
However there are only
~1000 topologically
different domain
structures, which means
that there are 10% side-
schain arrangements
with less than 20%
homology that give
similar polypeptide
folds.

similar 3D-structures

A Roll
T
A &G v
flavodoxin p-lactamase
(4fxn) (1mblA1)




Protein Folding, PSSPs & Protein Design

H yvoon uag tprrotayovc dounc mpoteivng eival ovaykoio
npovimdbeon yioo Tov owoccsxa&acuo ¢ Aettovpyiac g yo

OLAPOPES PLoTEYVOAOYIKEC EQUPLLOYEG.

To mpoPAnua g emitvyovg mTPOPAeYNS/ HovTEAOTOINGNC NG
AVOOITA®MONG TOV TMPOTIEIVOV UE  O0E00UEVOL  OmO TNV
aAANAovYia TOV aUVOCEMV TNC, OTOTEAEL OO POVIKE KEVTPIKO
Ocuo vy v tayeia TPO0Oo TG TPMOTEIVIKNC UNYOVIKNG Kol
Y10, TOV GYEOLOGLO TTPWOTEIVOV.



Primary Structure: —I Gly |—| Ser H Asp |—| Cys '—

Secondary Structure:

Tertiary Structure:

Quaternary Structure:

U

(a)

(b)

(c)

(d)

In vitro methods of obtaining the detailed
structure of proteins include

X-ray crystallography, nuclear magnetic
resonance spectroscopy

and electron micrography. Although these
methods are accurate, they are time-consuming
and costly. Due to these disadvantages,
innovative approaches to predict protein
structures, such as machine learning, have
become the panacea.

In the early years, Lim (1974) proposed a
method that utilized the physicochemical
characteristics of amino acids to predict protein
structure.Later, a similar approach was also
proposed in Ptitsyn and Finkelstein

(1983). Additionally, prediction attempts using
sequence patterns and statistical analysis have
also been thoroughly investigated in the early
years of PSSP,



Protein Folding & Protein Structure
Predictions(PSSPs)

Ever since Kendrew et al. (1958, 1960) and Perutz et al. (1960) determined the first
structures of proteins using x-ray crystallography around 1960 (for which they
received the shared Nobel Prize (1962)), researchers have been attempting to
understand the protein folding problem. By 1988, it was realized that the PSSP
problem would require researchers to move away from traditional computing onto
newer ways of computation (Rooman and Wodak, 1988; Kneller et al., 1990).

Hence, machine learning techniques such as ANN were explored. Fig. 4 is a graph
that represents the accumulation of the efforts made in improving PSSP with NN
over the past 3 decades.

Accumulation of Published Methods
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Prediction of protein structure from sequence
may exploit our knowledge of molecular forces
and evolution

Computational methods proceed along two complementary paths
that focus either on the physical interactions in the protein
structure or the evolutionary history.

Physical interactions heavily integrate our understanding of
molecular driving forces (thermodynamic/ Kinetic simulations
or statistical approximations.

Evolutionary considerations provide constraints on protein
structures derived from the bioinformatics analysis of the
evolution history of proteins, homology to known structures
and pairwise evolutionary correlations.



Prediction of protein structure from sequence Is a major
scientific problem

(Physical interactions, Evolutionary history)

« Complex task —
* Frequently enormous computing time required

* Inverse protein folding problem (which sequence patterns are
compatible with a specific fold?)/ Threading techniques



Knowledge of secondary structure is frequently
necessary for the prediction of tertiary structure

« Modelling tertiary structure from the amino
acid sequence alone Is for many aa sequences
an unsolved problem

 Global tertiary structure imposes frequently
local secondary structure



Secondary structure prediction methods benefit from
multiple sequence alignments of homologous proteins

Goal: classify each residue as alpha, beta or coil.

Assumption: Secondary structure of a residue is determined by the amino acid
at the given position and amino acids at the neighboring ones.

Several prediction methods for secondary structure of proteins have
been proposed (most frequently used: Chou & Fasman, GOR, Lim)

All 3 methods assign 1 out of 3 states to each residue

Applied to a set of homologous proteins, the predictive power is higher
(underlying assumptions: scaffold more conserved than a.a. sequence)
(best prediction accuracies based on homologies ~72% on the average)




Chow-Fasman algorithm
Chow, P.Y. and Fasman, G.D. Biochemistry (1974)

Statistical approach based on calculation of statistical
propensities of each residuum to form an a-helix or -
strand

LLow accuracy (~50%) (accuracy of current methods
>75%).



GOR

Consider window of 17 positions and see how the conformation of
the central residuum depends on this residuum and its 18 neighbors
(8 in each direction).

Ideally one would consider all possible combinations of these
neighbors. This is impossible: would require collecting statistics for
207 sequences.

Instead assume the central residue depends on its neighbors but the
neighbors are independent on each other

Implementation :Statistical information derived from proteins of

known structure is stored in three (17X20)matrices, one each for a,
B, coil



Structure Predictions

» Model building by homology

 Prediction of loop regions (main chain
conformations cluster in sets of similar

structures)
— Data base of loops



Secondary structure prediction
methods

How good are the methods?

Single sequence. single residuum methods

Chou & Fasman 50%

Single sequence, multiple residues methods
GOR 1V 65%
Multiple sequence methods

NNSSP 71%

PHD 71%

Taking a weighted consensus of many methods moderate
improvement.




Artificial Neural Network (ANN) methods

Wardah et al., https://doi.org/10.1016/j.compbiolchem.2019.107093

Traditional computing involves human-written instructions in a computer program.
On the contrary, artificial intelligence allows a system to modify or write new
instructions for itself. One approach of this latter style is through the use of ANNS.
This concept is derived from the working patterns of the biological neurons in the
brain. Just as the millions of neurons in the brain collectively execute the cognitive
processes, ANNSs are fashioned in a similar way to carry out intelligent
computation.

Nucleus

Biological neuron Artificial neuron



Artificial Neural Network (ANN) methods

An ANN is a network created by at least 2 layers of neuron-like processing units.
The initial layer is called the input layer as it introduces input variables into the
network. The final layer is the output layer, which may contain units for carrying
out output classification. For networks that contain more than 2 layers, the
remaining inner layers are called the hidden layers. A shallow network is one that
ideally contains none or one hidden layer. On the other hand, deep network refers to
a network of artificial neurons comprising many hidden layers. Evidently, deep
NNs have been highly successful in solving complex problems (Bianchini and

Scarselli, 2014).

Shallow Neural Network

hidden layer

input layer 7

output layer

Deep Neural Network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer




Artificial Neural Network (ANN) methods

Inside an ANN, complex matrix computations take place throughout the inner
layers. A standard ANN generally accepts a set of input values in the form of
vectors containing feature-values (example x0, x1, X2, ..., xn). Each unit (neuron)
that is part of the following layer assigns a designated weight (and other parameters
such as bias) to the input, which produces some output. In supervised learning, the
real corresponding output is also supplied to the algorithm during training. If the
produced output does not match the real output for that particular input, the weights
get adjusted automatically through an algorithm of choice. In large networks with
high dimensionality like those for the protein structure prediction problems,
backpropagation is often used for adjusting weights. Backpropagation refers to the
method of revisiting the previous layers and adjusting weights so that the calculated
output is closer to the actual expected output



Neural network methods

Inside an ANN, complex matrix computations take place throughout the inner layers. A standard
ANN generally accepts a set of input values in the form of vectors containing feature-values
(example x0, x1, x2, ..., xn). Each unit (neuron) that is part of the following layer assigns a
designated weight (and other parameters such as bias) to the input, which produces some output. In
supervised learning, the real corresponding output is also supplied to the algorithm during training.
If the produced output does not match the real output for that particular input, the weights get
adjusted automatically through an algorithm of choice. In large networks with high dimensionality
like those for the protein structure prediction problems, backpropagation is often used for adjusting
weights. Backpropagation refers to the method of revisiting the previous layers and adjusting
weights so that the calculated output is closer to the actual expected output

Level 1: sequence to structure

Take window of 13 adjacent residues is (6 before and 6 after the

Level 2: Structure to structure
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Artificial Neural Network methods

Accumulation of Published Methods

Artificial neuron:
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Cumulative number of methods
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S
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Processing
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w 10 - i
X
k
input Output 0 | | | i | |
1985 1990 1995 2000 2005 2010 2015 2020
Year
Table 2
The major periodically relevant state-of-the-art methods are shown along with the types of feature values they employed in their networks.
Neural network method Accuracy (Q3) Seq info Evo info Physico chem info
Qian &Sejnowski 1988 (Qian and Sejnowski, 1988) 64.3% v
PHD 1994 (Rost et al., 1994) 71.4% v 4
PSIPRED 1997 (Jones, 1999) 76.5% v v
JPRED3 2008 (Cole et al., 2007) 81.5% v v
SPIDER3 2017 (Heffernan et al., 2017) 84% v v v




A Structure-Prediction-Miracle?

(...AlphaFold 2 means that predicting a protein structure from sequence will be, for
all practical purposes, a solved problem...)
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A Machine Learning Approach:
Alphafold

Protein structure predictions focus on
either the physical interactions or the
evolutionary history of a protein Jumper et al., Highly accurate protein structure

prediction with AlphaFold, Nature | Vol 596 | 26

The Delphi oracle in Greece August 2021 | 583



AlphaFold

Article

Improved protein structure prediction using
potentials from deeplearning

Reduce P
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Proteinstructure prediction can be used to determine the three-dimensional shape of
aprotein fromits amino acid sequence'. This problem is of fundamental importance
asthe structure of a protein largely determines its function’; however, protein
structures can be difficult to determine experimentally. Considerable progress has
recently been made by leveraging genetic information. It is possible to infer which
aminoacid residuesare in contact by analysing covariation in homologous
sequences, which aidsin the prediction of protein structures®. Here we show that we



AlphaFold

AlphaFold takes the amino acid sequence and convert it into an image for an artificial

intelligence algorithm to translate it into another image representing the structure of
the protein.

INPUT AND OUTPUT: Multiple Sequence Alignments and DISTOGRAMS

Phase 1.
Prediction of distances with Deep Learning

Phase 2.
Optimization of the protein structure

.TEMKKKFKN
‘{NHCVEVRCS

INPUT OUTPUT OUTPUT 2
Amino acid sequence information Protein distance matrix 3d protein structure
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Fig.1| The performance of AlphaFold inthe CASP13 assessment.a, Number
of FM (FM+FM/1BM) domains predicted for agiven | M-score threshold for
AlphaFold and the other 97 groups. b, For the six new foldsidentified by the
CASP13assessors, the TM score of AlphaFold was compared with the other
groups, together withthe nativestructures. The structure of 11017s2-D1lisnot
available for publication. ¢, Precisions for long-range contact predictionin
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CASP13 forthe most probable L, £/2 or L/S contacts, where Listhelengthof the
domain. I he distancedistributions used by AlphaFold in CASP13, thresholded
to contact predictions, are compared with the submissions by the two best-
ranked contact prediction methodsin CASP13: 498 (RaptorX-Contact’®) and
032 (IripletRes®) on“all groups’ targets, with updated domain definitions for
10953s2.
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Machine Learning

Al

1gmg: Formation of transient S-S bridges upon folding



APPLICATIONS



Mutants with cavities
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Figure 2. Cavit

the internal water molecules.

Figure 1. The wild-type ROP dimer with the sites of

mutation (Leud1) and
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Figure 6. The destabilization, AAG, of ROT, barmase and T4 lysosyme mutants presented as 3 funchon of An,
(Table 11 The leask-squaces line for Tew -+ Ala mutants was used to determine the slope ag 1117 keal mol™! contact .
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Mutants with cavities

AAG (Kcal/mol)

Aanh,wt (%)

Figure 7. The destabilization, AAG, of ROP, bamase and T4 lysozyme mutants (Table 1), presented as a function
of the per cent change of contacts relative to the wild-type protein (calculated as Any/ny..). The symbols are the

same as described in Figure 5.




Protein folding studies of recurrent
tertiary motifs

a-helical
bundles

Energy unfolded

protein

1 ]

’
. native

Thermal unfolding for Rop and its variants | .
protein ’

recorded by CD & ) i 2y

Configuration

Amprazi et al., PNAS (2014)

DimensinlessKrayplots Kefala et al., IJIMS (2021)



Novel protein folds have been engineered

Arnittali et al, Int. J. Mol. Sci.
2021

—) Applications: Scaffolds for protein
engineering and new biomaterials



Accessing remote regions of protein sequence space:
Backwards reading the sequences of a-Helical Bundles
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Probing Protein Folding with Sequence-Reversed
oi-Helical Bundles
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IIpwteivikeg alAniovyiec & Biloteyvoioyia

>tv  BloteyvoAloyia. Owakpivooue o000 Pootkéc katevbOVGEIL MOV
aELOTOIOVV TIC OYECELS UETAED OOUNG-OUIVOEIKNC OAANAOLYTOG-00UNC
OTIC TPWTEIVEG: TNV TPOTEIVIKN UNYEVIKY], ONACOT TNV UETAAANYT] TOV
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TPOTOTOGOVLE TNV AELTOVPYiC TNG KE Eva TPOoPAEYILO TPOTO, KO TOV
OYEOLOGUO TTPAOTEIVAOV, TTOV EYEL TOV TO PLAOO0E0 GKOTO VA, GYEOIAGEL
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Programmable meganucleases via helical scaffolds
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A heart of ice: Engineering of
antifreeze proteins based on helical
bundles

Antifreeze proteins are a class of proteins
that adsorb to the surface of ice crystals
to prevent their growth

’ Binding plane

’ AFGP Type | Type ll Type lll  Insect AFP

Inspired from Maxi protein which
prevents the blood of winter flounder
(Pseudopleuronectes americanus) from
freezing, an effect of its water-filled core.
This water structure sticks outside the
protein, where it appears to bind to ice.
Science 343, 795-798 (2014)




B) The autocatal

tic hydroxylation of
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2-Hyp

Polysaccharide deacetylases (PDAs) from B.cereus and B.anthracis

B. cereus ATCC 14579

B. anthracis st. Ames

Possible function

Identity

Similarity

NP_831730 (275) (BC1960)
NP_833348 (213) (BC3618)
NP_832677 (275) (BC2929)
NP_834868 (245) (BC5204)
NP_831744 (273) (BC1974)
NP_830306 (260) (BC0467)
NP_830050 (254) (BC0171)
NP_831543 (234) (BC1768)
NP_833526 (299) (BC3804)
NP_830200 (360) (BC0361)
NP_830200 (360) (BC0361)

NP_844369 (275) (BA1961)
NP_845942 (213) (BA3679)
NP_845280 (275) (BA2944)
NP_847604 (245) (BA5436)
NP_844383 (273) (BA1977)
NP_842967 (273) (BA0424)
NP_842717 (254) (BA0150)
NP_844255 (234) (BA1836)
NP_846187 (299) (BA3943)
NP_842877 (360) (BA0330)
NP_842878 (367) (BA0331)

Peptidoglycan GleNAc deacetylase
Peptidoglycan GlcNAc deacetylase
Peptidoglycan GlcNAc deacetylase
Peptidoglycan GlcNAc deacetylase
Peptidoglycan GlcNAc deacetylase
Peptidoglycan MurNAc deacetylase
Chitooligosaccharide deacetylase
Chitooligosaccharide deacetylase
Chitooligosaccharide deacetylase
PDA

PDA

Collagen

Arnaouteli et al., JBC
501 E



All these enzymes share a universal conserved region called polysaccharide deacetylase
domain (according to the Henrissat classification). All five members of this family catalyze the
hydrolysis of either N -linked acetyl group from N -acetylglucosamine residues (chitin
deacetylases, NodB and peptidoglycan N -acetylglucosamine deacetylases), or O -linked acetyl
groups from O -acetylxylose residues (acetyl xylan esterases, xylanases).

Peptidoglycan modification, specifically N -deacetylation, is a highly efficient strategy used
by pathogenic bacteria to evade innate host defenses. For example, de- N -acetylation of
peptidoglycan GIcNAc confers resistance to lysozyme, an exogenous muramidase, upon several
bacterial species, such as S. pneumoniae, Bacillus cereus, L. monocytogenes, Lactococcus lactis
and Helicobacter pylori.
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A new form of hydroxyproline (2-Hyp) is a frequent
occurrence in active sites of PDAs and is associated
with conserved sequence motifs

(A)

Kokkinidis et al, Adv. prot.
Chem. Struct. Biol., 2020




Pro C ,-hydroxylation is an active site maturation
process

The origin of the —OH group of 2-Hyp is molecular oxygen.
The Pro—2-Hyp conversion is autocatalytic , highly specific, and occurs partially.

Pro C, hydroxylation is functionally intertwined with the deacetylation reaction, the two processes
share the same active site and one key/catalytic (Asp) residue.

The introduction of the additional —OH group in the active site via the Pro—2-Hyp conversion
represents an active site maturation event which enhances 10x the deacetylation activity.

His His His
Asp ___uf\"k: . Asp ,._,_,uNJ\ _HN
N0 “-NE 0 =Ny Asp O ‘-.\'..__" R, i
D n\Rl o I;\ Ry H(O “NH 3
Asp O-. ~CH Asp O-y. 1 . CH :
H 3 Ty — 0T CH;  Tyr AW O5l-..n o 9
HUNE T o EL G T | — K W05 i
~ NHy i hig N-Pro H,N= 2 Asp - His + NH; “ . HO 0 bt
HN= Asp o BB ‘ 2! P Hig N=Pro H,N= Asp' His )
; His HN D 3 N-pPr
HN H HN His N=Pro
Ar Arg ‘\
Arg Arg

“x nnélr a al;\glp B
A B C g‘ .. g‘
‘ r g' . L ;"' ° b A’
a 24rp A v
B 201 : 8o

Fadouloglou et al, JACS, 2017 o H




Pseudoenzymes from B.cereus & B.anthracis

(Two deaths followed by resurrection)

Superposition of

BC1960 77  LTFDDG 128 IGNHTYSHP 165 PKFIERPXYG
BC1974 73 LTFDDG 13 VGMHSMTHN 160 PKLTRPPYG
BA0330 202 VTFDDG 261 MQSHTATHA 296 VIAVAYXFG
BA0330 D205A 202 VTFADG 261 MQSHTATHA 296 VIAVAYXFG
BA39473 91 LTINVA 141 VGNHSYTHP 177 VRWFAPPSG
BA3943 N94D 91 LTIDVA 141 VGNHSYTHP 177 VRWFAPESG
BA3943 N94D V95D 91  LTIDDA 141 VGNHSYTHP 177 VRWFAPPSG
Motif 1 Motif 3

Ba3943: Motif 1 is corrupted and
a sizeable cavity is located In the
interior of the protein. No
deacetylation/ C, hydroxylation
activities




120
100
80
60
40

20

(cpm) 0

The Dead
RELATIVE

Bc1960

enzyme assay

of deacetylase activity

Ba3943

56.85

Ba3943 N94D V95D
A183R

'
RESURRECTION

BA3943
at1.1 A



* Thank you



EPI'AXIA

Knowledge about protein structure
Incorporated in AlphaFold

Jumper et al., Nature | Vol 596 | 26 August 2021
| 583
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green, non-contactsinblue. e, f, CASP target TO990, L =552, PDB6N9V.
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