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Abstract

Active dendrites can be viewed as linear classi"ers augmented by a few second-order product
terms representing multiplicative synaptic interactions [4]. To quantify the degree to which
local synaptic interactions could augment the memory capacity of a neuron, we have studied
the family of `subsampled quadratica (SQ) classi"ers. Each SQ classi"er is a linear classi"er
augmented by a subset k of the K"O(d2) second-order product terms available in d dimen-
sions. Using a randomized classi"cation task, we show that the error rate of an SQ classi"er
depends only on: (1) the product term ratio p"k/K, which identi"es a family of isomorphic
classi"ers, and (2) the number of bits contained in the SQ classi"er's speci"cation. Finally, we
quantify the increase in memory capacity of any SQ classi"er relative to its linear counter-
part. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Empirical studies indicate that many neuron types are electrically `activea, i.e. their
dendrites contain voltage-dependent ionic conductances that can lead to full regen-
erative propagation of action potentials and other dynamical phenomena [9]. In
previous work, we developed a single-neuron model, which includes location-depen-
dent multiplicative synaptic interactions [4,5] and showed that active dendrites could
boost the pattern discrimination/memory capacity of a neuron. These results suggest
that an active dendritic tree behaves like a high-dimensional quadratic classi"er which
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contains only a small subset of the possible second-order interaction terms. Though it
is known that higher-order terms can increase the power of a learning machine for
both regression and classi"cation [1,8,3,7], existing theory regarding the learning
capabilities of quadratic classi"ers is limited.

In this work, we try to quantify the degree to which inclusion of varying numbers of
non-zero quadratic terms augments the capacity of a `subsampled quadratica (SQ)
classi"er relative to its linear counterpart. We study the relations between (i) the input
space dimensionality, (ii) the number of non-zero product terms available to an SQ
classi"er, (iii) the di$culty of the classi"cation problem, and (iv) the resulting boost in
classi"cation performance relative to a linear classi"er on a randomized benchmark
learning problem.

2. Methods

2.1. The classixcation problem

We adopt the classi"cation problem in which N patterns are drawn randomly from
a d-dimensional zero-mean unit-variance Gaussian distribution G, and half of the
patterns are randomly assigned to each of the two classes ¹

104
and ¹

/%'
. Since all

N patterns are drawn from a single distribution, discrimination between ¹
104

and
¹

/%'
becomes arbitrarily di$cult as N grows large. We quantify the memory capacity

of a classi"er on this benchmark task by a graph of the classi"cation error versus the
training set size N.

2.2. Subsampled-quadratic classixers

We considered the family of SQ classi"ers which contain only a subset k of the
K"(d2#d)/2 available second-order terms in d dimensions. When k"0 we have
a pure linear classi"er, while k"K corresponds to a `fulla quadratic classi"er. In all
simulations reported here, the coe$cients for the k non-zero quadratic terms were
determined as follows. A conjugate gradient algorithm was used to train a full
quadratic classi"er to minimize mean squared error (MSE) over the training set.
Given the sphericity of the training set distribution, the selection of the k `besta
product terms after training could be made based on weight magnitude. It was veri"ed
empirically that the increase in MSE or classi"cation error when a single weight was
set to zero grew monotonically with the weight magnitude. The pruned classi"er was
then retrained to minimize MSE and the output was passed through a sigmoidal
thresholding function (1!e~x@s)/(1#e~x@s) with slope s"0.51.

3. Results

3.1. The linear case

We derived an analytical expression for the performance curve of a pure linear
classi"er in the limit of large N, based on the assumption that the positive and
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negative training sets ¹
104

and ¹
/%'

were themselves spherical, unit-variance Gaussian
blobs G

104
and G

/%'
, with means XM

104
and XM

/%'
slightly shifted from the origin.

Assuming the optimal discrimination surface was a hyperplane cutting perpen-
dicularly halfway between the means, we found that in the limit of high dimension

Fig. 1. A. Analytical model (crosses) "t numerical simulations results (squares) in the asymptote of large N.
The dashed lines indicate VC dimension (N"1#d) and Cover capacity (N"2d) for the Perceptron,
which in this problem corresponds to approximately 1% and 7% error rates, respectively. B. Bayes-optimal
classi"er (crosses) "t full-quadratic classi"er (squares) in the limit of large N. C. Scaling of linear and
quadratic performance curves across dimension, when plotted against training patterns per model para-
meter (1#d for linear, 1#d#(d2#d)/2 for quadratic).
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with N<d, the expected classi"cation error is

CE"

1

2
erfcAS

d

2NB, (1)

where p2 is the variance of the original generating distribution (p"1 in this case) and
the complementary error function is de"ned by erfc(z)"(2/Jp):=

z
e~t

2 dt, with z"
x/J2p. Pearlmutter has previously analyzed the similar `deja vua learning problem [6].

This expression was compared to the results of computer simulations for 10-
dimensional random training sets of various sizes. As expected, the expression proved
valid in the asymptote of large training sets (i.e. N'10d) as shown in Fig. 1A.
Departures from the analytical model for small training sets were due to violation of
the spherical Gaussian assumption, i.e. where the optimization routine could adjust
the discriminating hyperplane to capitalize on geometric idiosynchracies of the sparse
training set. As is evident in Eq. (1), the dependence of classi"cation error on N and
d appears only as a ratio, consistent with the linear dependence on d of the VC
dimension (N"1#d) and Cover capacity (N"2d) of a Perceptron. Each of these
scalar capacities is indicated by a dashed line in Fig. 1A.

3.2. The full-quadratic case

As a geometric control for the full quadratic classi"er, we modeled ¹
104

and ¹
/%'

as
non-spherical Gaussian blobs by estimating their covariance matrices from the data.
In this way, we could test the Bayes-optimal hyperquadric discriminant function [2]
to compare with the results of gradient-based parameter optimization on the raw
data. The results were similar to the linear case (Fig. 1B).

3.3. Scaling of linear and quadratic performance curves with dimension

Consistent with the invariance of Eq. (1) to the ratio of training patterns to classi"er
parameters in the limit of large d, the trained hyperplane performance curves for 10,
20, and 30 dimensions fall into precise superposition when plotted as a function of
training patterns per model parameter N/(1#d), even for N;d, in the region where
the Gaussian assumption breaks down (Fig. 1C).

Similarly for the full-quadratic case, we found empirically that the performance
curves fell into superposition across dimension when plotted as a function of patterns
per total parameters, in this case N/(1#d#(d2#d)/2). This scaling relation again
held up for small N where the Gaussian assumption was not valid (Fig. 1C). We also
noted that the linear and full-quadratic performance curves did not scale to each other
in a simple way, such as by normalizing by the number of classi"er parameters } their
shapes were fundamentally di!erent (Fig. 1C).

3.4. Subsampled-quadratic classixers

Empirical performance curves for SQ classi"ers for a range of k values in 10
dimensions are shown in Fig. 2A. As expected, the SQ error curves fall within the
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Fig. 2. Performance of SQ classi"ers. A. Performance curves for various values of k in a 10-dimensional
input space. B. Ratio of the memory capacity of SQ classi"ers in 10 dimensions relative to a linear classi"er
k"0, plotted as a function of the error rate.

upper and lower bounds provided by the linear and full-quadratic cases. The capa-
city boost achieved by addition of second-order terms to a linear classi"er can be
read o! the graph by choosing a "xed error rate, and reading o! the associated
storage capacities for the linear versus various SQ curves. Ratios of storage capa-
city relative to the linear classi"er (k"0) are shown in Fig. 2B. For example, at "xed
1% error rate in 10 dimensions, the addition of the 10 best quadratic terms to the 11
linear and constant terms increases the trainable memory capacity by more than
a factor of 3.

3.5. Scaling relations for SQ classixers

Given that the error surface for SQ classi"ers is three-dimensional over the
parameters N, d and k, we sought scaling relations or other invariances that would
allow this error surface to be described by fewer underlining variables. Both linear and
full-quadratic performance curves could be brought into superposition across dimen-
sion by a simple normalization of the x-axis to re#ect `patterns per classi"er para-
metera. Unfortunately, this strategy failed for intermediate SQ classi"ers. We found
empirically, however, that two SQ performance curves could be consistently brought
into register across dimension with an x-axis scaling, but only when their product
term ratios were equal, i.e. p"k

1
/K

1
"k

2
/K

2
, indicating that a key geometric

invariance in the SQ family involves the proportion of available second-order terms
included in the classi"er (Fig. 3A). It remained to determine whether the value of this
scaling factor could be consistently de"ned for the entire SQ family. In a search for the
correct scaling factor, we hypothesized that it involved the number of bits needed to
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Fig. 3. A. Relationship between SQ classi"ers in di!erent dimensions whose performance curves were
isomorphic. A linear relation (equality) holds between the product term ratios p"k/K for two isomorphic
SQ classi"ers. B. Superimposed scaled performance curves for 10, 20 and 30 dimensional input spaces, for
p+21% and 45%. (Approximation arises from quantization of k values.) When training patterns are
drawn uniformly from the unit hypercube, SQ classi"ers with equal p values continue to scale across
dimension according to their bit totals. However, Gaussian and uniform curves have di!erent shapes (not
shown). For all curves shown here, the x-axis was scaled by the total number of classi"er bits, as given by
Eq. (2).

specify an SQ classi"er:

B(k, d)"(1#d#k)w#log
2A

K

k B, (2)

where the "rst term speci"es the number of bits needed to encode the explicit weight
values (with w indicating bits per weight), and the second term speci"es the number of
bits needed to specify which k of the available K product terms is used. We found
empirically that by choosing w"4, Eq. (2) gave the correct scaling factor relating SQ
classi"er performance curves for any k and d. This value for w was con"rmed in
a separate experiment where we found that quantization of weights with fewer than
four bits resulted in a sharp increase in the classi"cation error. Examples of nor-
malized performance curves are shown in Fig. 3B for two values of p. Conveniently,
we note that for k"0 and K the combinatorial term in Eq. (2) drops out, so that the
capacity scaling factor becomes directly proportional to the number of explicit weight
parameters. This explains the success of simple per-parameter scaling for linear and
full-quadratic classi"ers, such as was used to generate the inter-dimensional corre-
spondences shown in Fig. 1C.
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Fig. 4. Boosting of SQ memory capacity relative to linear counterpart at a "xed classi"cation error rate
e"1%. Plot of F

-*/%!3
shows the increase in capacity of an SQ classi"er relative to the corresponding linear

classi"er. For "xed p-ratio, the boost factor growth is O(d).

3.6. SQ classixer performance relative to linear: how large the boost?

Based on a single set of SQ performance curves in a reference dimension d
3
, we

derived an expression to predict the boost factor that relates the memory capacity of
any SQ

k,d
classi"er in any dimension to the capacity of a linear classi"er in the same

dimension, for a given error rate e:

F
-*/%!3

(p, d, e)"FK
-*/%!3

(p, d
3
, e)

1#d
3

1#d

B(k,d)

B(k
3
,d

3
)
, (3)

where FK
-*/%!3

is measured empirically from a reference curve; for example, a range of
values of FK

-*/%!3
for d

3
"10 are shown in (Fig. 2B). This boost factor is valid for any

SQ
k,d

classi"er with p-ratio equivalent to that of an SQ classi"er in the reference
dimension d

3
. As seen in the above equation, the boost factor follows the ratio of

classi"er bits consumed by the SQ vs. linear classi"ers and grows as O(d) since the
capacity of the SQ classi"er with "xed p-ratio grows as O(d2), while that of the linear
classi"er grows as O(d) (Fig. 4A).

4. Discussion

Our main result is that, for the learning problem posed here, the error rate of
a subsampled quadratic classi"er with k non-zero product terms in d dimensions
depends only on 2 variables: (1) the product term ratio p"k/K"2k/(d2#d), which
speci"es the family of geometrically equivalent learning machines, and (2) the number
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of training patterns per classi"er bit, which keys the absolute performance level to the
classi"er capacity. One clear conclusion by examining this representation of the SQ
family is that signi"cantly di!erent error rates can arise from classi"ers even when
fully normalized for capacity (as measured by total classi"er bits), depending on
geometric aspects of the learning problem. Another result involves the expression for
the total bits needed to specify an SQ classi"er. As seen in Eq. (2), the absolute
capacity of an SQ classi"er depends on having a choice as to which coe$cients to
include in the classi"er, in addition to the values of the coe$cients. Furthermore, we
have shown that we may estimate based on the graph in Fig. 4A an upper limit on the
degree to which active dendrites could augment the capacity of a neuron relative to its
Perceptron-like counterpart.

Our results take us a step closer to our goal of understanding how multiplicative
interactions among neighboring synapses on a dendritic tree can increase the learning
capacity of a neuron.
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