

Xcalibur

Proteome Discoverer

User Guide

XCALI-97232 Revision A July 2008

© 2008 Thermo Fisher Scientific Inc. All rights reserved.

Xcalibur is a registered trademarks of Thermo Fisher Scientific Inc. in the United States. ZCore, and Proteome Discoverer are trademarks of Thermo Fisher Scientific Inc. in the United States.

Adobe[®] and Acrobat[®] are registered trademarks of Adobe Systems Incorporated. Microsoft[®], Excel[®], Windows[®], and ActiveX[®] are registered trademarks of Microsoft Corporation. SEQUEST[®] is a registered trademark of the University of Washington. Mascot is first defined in an Electrophoresis publication, 20(18) 3551-67 (1999).

Thermo Fisher Scientific Inc. provides this document to its customers with a product purchase to use in the product operation. This document is copyright protected and any reproduction of the whole or any part of this document is strictly prohibited, except with the written authorization of Thermo Fisher Scientific Inc.

The contents of this document are subject to change without notice. All technical information in this document is for reference purposes only. System configurations and specifications in this document supersede all previous information received by the purchaser.

Thermo Fisher Scientific Inc. makes no representations that this document is complete, accurate or errorfree and assumes no responsibility and will not be liable for any errors, omissions, damage or loss that might result from any use of this document, even if the information in the document is followed properly.

This document is not part of any sales contract between Thermo Fisher Scientific Inc. and a purchaser. This document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of Sale shall govern all conflicting information between the two documents.

Release history: version 1.0

For Research Use Only. Not regulated for medical or veterinary diagnostic use by U.S. Federal Drug Administration or other competent authorities.

Contents

	Preface	vii
	Related Documentation	vii
	System Requirements	viii
	Licenses	viii
	Safety and Special Notices	x
	Contacting Us	xi
Chapter 1	Getting to Know Proteome Discoverer	1
	Proteome Discoverer User Interface	1
	Main Window and Navigation	2
	Menus	4
	Understanding Proteome Discoverer	11
	Proteome Discoverer Features	12
	Using Proteome Discoverer	13
	Search Algorithms Overview	14
	Overview of Processing, Analyzing, and Interpreting Raw Data	14
	Mascot Search Algorithm	16
	ZCore Search Algorithm	16
	SEQUEST Search Algorithm	17
	Raw Data, Results, Reports, and Analysis	18
	Databases and Sample Files	18
	Proteome Discoverer Input and Output File Types	18
	Proteome Discoverer Workflow	19
	Quantitation Overview	20
	About iTRAQ Quantitation	20
	Peptide Ratio Calculation	20
	Show Reporter Intensities	21
	Quantitation Spectrum	21
	Qual Browser Overview	22
	InforSense Protein Annotation Discussion	23
	InforSense Workflow Types	23
	Introduction to GO Ontology	24
	Introduction to Metadata Retrieval	24

С

Chapter 2	Using Proteome Discoverer	25
-	How Proteome Discoverer Fits Into Your Lab Workflow	26
	Overview of Menu Options	27
	Start Proteome Discoverer	27
	File Menu	27
	Working with Search Wizards	29
	Search Results, Reports, and Analysis	36
	Understanding Reports and Views	37
	Search Summary Page	38
	Protein Grid	39
	Creating a Report from Multiple Results	41
	Peptide Grid	43
	Peptide Confidence Page	46
	Search Input Page	46
	Filters Page	47
	Using the Proteome Discoverer Workflow Editor	49
	Workflow Workspace	
	Creating and Saving a Search Workflow	53
	Discoverer Workflow Nodes Details	
	Working with Reports	
	Working with the Search Job Queue	60
	Checking Your Job Queue Search Status	60
	Deleting Items from the Queue List	61
	Using FASTA Database Utilities	62
	FASTA Files	63
	Adding Protein References to FASTA	64
	Performing a Decoy Database Search	64
	Working with Chemical Modifications	66
	How to Quantify Your Data Using Adminstration and Workflow	67
	Reporter Ion Based Quantitation in Proteome Discoverer	67
	Quantitation Summary	70
	Assess the Abundance of the Precursor.	72
	Using Qual Browser	72
	Job Queue	73
	Using the Job Queue	73
	Open a Completed Report From Job Queue	74
	InforSense	75
Chapter 3	Interpreting Search Results	77
	Working with the Initial Results Report	78
	Organizing Rows and Columns	78
	Saving and Applying Results Report Layout Changes	82

	Working with Filters	84
	Filtering Results	85
	Removing and Deactivating Filters	87
	Quick Filtered Items	92
	False Discovery Rates	93
	How to Calculate False Discovery Rates	93
	What are Target False Discovery Rates (FDRs)?	94
	Determining False Discovery Rates	95
	False Discovery Rates and Peptide Confidence Indicators	97
	Working with the Proteins Grid	98
	Researching Groups of Proteins	98
	Interpreting Your Results with the Chromatogram View	100
	Interpreting Your Results with the Protein Identification Details View .	102
	Report Item Distribution Chart	103
	Working with the Peptides Grid	106
	Interpreting Your Results with the Search Reports Views	106
	Peptide Identification Details	108
	Fragment Ions	109
	Working with the Search Input	112
	Interpreting the Isotope Pattern View	113
	Interpreting the Spectrum View	114
	Interpreting the Extracted Ion Chromatogram	115
	Interpreting the Fragment Match View	115
	Exporting Data to Other Programs	117
	Copying or Saving a View to an Image	117
	Exporting Exclusion and Inclusion Mass Lists to Xcalibur	118
	Export Search Results to Excel.	119
	Exporting Spectra	123
	Working with InforSense Discussion	124
	InforSense and the Internet	124
	Data Retrieval Content Levels	125
	Using InforSense Protein Annotation	125
Chapter 4	Customizing Proteome Discoverer	131
	Customizing the Toolbar	131
	Customizing the Toolbar Layout	132
	Customizing Toolbar Icons, Fonts, and Tooltips Display	135
	Customizing Cleavage Reagents	137
	Customizing Chemical Modification Settings	138
	Entering and Deleting Chemical Modifications	139
	Adding and Removing Amino Acids	141
	Importing Chemical Modifications	142
	Using FASTA Database Administration	144

Appendix A	Chemistry References	
	Amino Acid Mass Values	147
	Modification Values	148
	Enzyme Cleavage Properties	149
	Fragment Ions	150
Appendix B	FASTA Reference	
	NCBI	151
	MSIPI	152
	IPI	152
	UniRef100	153
	SwissProt & TrEMBL	153
	MSDB	
	Custom Database Support	154
	Custom Parsing Rule A	154
	Custom Parsing Rule B	
	Custom Parsing Rule C	
	Index	157

Preface

This guide describes how to use Proteome Discoverer[™] 1.0 for peptide and protein mass spectrometry analyses.

Contents

- Related Documentation
- Getting to Know Proteome Discoverer
- System Requirements
- Licenses
- Safety and Special Notices
- Contacting Us

Related Documentation

This guide includes information on procedures and parameters used in Proteome Discoverer. You can access this information by reading a PDF version of the *Xcalibur Proteome Discoverer User Guide* or searching the Help from within the Proteome Discoverer program using the Help menu. The User Guide (PDF) comes bundled with the application software.

- ✤ To open the help
 - From the main Proteome Discoverer window, choose Help > Proteome Discoverer Help.
 - If available for a specific window or view, click **Help** or press **F1** for information about setting parameters.

For more information, including upcoming application notes, visit www.thermo.com.

Thermo Scientific

System Requirements

Proteome Discoverer requires a license. In addition, your system must meet these minimum requirements.

System	Requirements
Hardware	 2 GHz processor with 2 GB RAM CD-ROM drive Video card and monitor capable of 1280x1024 resolution (XGA) Screen resolution of 96 dpi (set in Windows Disaply Properties) 75 GB or greater available on the C: drive NTFS format
Software	 Microsoft[™] Windows[™] XP Professional with Service Pack 2 or Service Pack 3

Licenses

You can request a license for Proteome Discoverer as well as for your proteome computer lab, such as InforSense.

* To request your Proteome Discoverer license

- 1. Choose Administration > Manage Licenses.
- 2. In the barcode column Discoverer row, enter the number from the Proteome Discoverer jewel case.

Tip The barcode is read-only for permanent licenses.

Figure 1. License Administration list of features

e on 07/16/2008	ABCD-5678-1234	
unt .		
3F IL		
e on 07/16/2008		
		4.4
ſ	re on 07/16/2008	re on 07/16/2008

3. In the User Information pane, type your contact information.

Figure 2. License User Information pane

-Us	er Information	
►	Name	Ashley Johnson 🔗
	Company	Thermo
	Street	156 River Oaks
	City	San Jose
	State	CA
	Zip Code	95134
	Country	USA
	Telephone	408-965-6000

4. In the Host Information pane, click Compose Email.

Figure 3. License Host Information pane

1. Host Information							
The Host Information is required to generate a license valid for your system. Send this information to licenses.ms@thermo.com.							
Compose Email - or -							
Copy to Clipboard							

Your default e-mail tool creates a new e-mail message, prepopulated with a message to Thermo Fisher Scientific, with a request for a Thermo Proteome Discoverer License.

- 5. When the license is sent back to you, copy and paste the license number into the Add Licenses box. See Figure 4.
- 6. Click Add Licenses.

Figure 4. Proteome Discoverer Add License pane

- 2 Add Licenses
After you received the email with the licenses, paste it's contents into the text box below and click the 'Add Licenses' button.
<the e-mailed="" goes="" here="" number="" to="" you=""></the>
Add Licenses Browse For Licenses

- * To enter other licenses, such as InforSense
- 1. Choose Administration > Manage Licenses.
- 2. In the Serial Number column <application> row, enter the <application> jewel case number.

Safety and Special Notices

Make sure you follow the precautionary statements presented in this guide. The safety and other special notices appear in boxes.

Safety and special notices include the following:

CAUTION Highlights hazards to humans, property, or the environment. Each CAUTION notice is accompanied by an appropriate CAUTION symbol.

IMPORTANT Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the system.

Note Highlights information of general interest.

Tip Highlights helpful information that can make a task easier.

Contacting Us

There are several ways to contact Thermo Fisher Scientific for the information you need.

✤ To contact Technical Support

Phone	800-532-4752
Fax	561-688-8736
E-mail	us.techsupport.analyze@thermofisher.com
Knowledge base	www.thermokb.com

Find software updates and utilities to download at mssupport.thermo.com.

* To contact Customer Service for ordering information

Phone	800-532-4752
Fax	561-688-8731
E-mail	us.customer-support.analyze@thermofisher.com
Web site	www.thermo.com/ms

✤ To copy manuals from the Internet

Go to mssupport.thermo.com and click Customer Manuals in the left margin of the window.

✤ To suggest changes to documentation or to Help

- Fill out a reader survey online at www.thermo.com/lcms-techpubs.
- Send an e-mail message to the Technical Publications Editor at techpubs-lcms@thermofisher.com.

Getting to Know Proteome Discoverer

Proteome Discoverer[™]1.0 is a configurable software package for peptide and protein mass spectrometry analyses. It is a true end-to-end solution for workflow driven analysis. You can use this suite of applications to analyze spectral data from all Thermo Fisher Scientific and other mass spectrometers.

This chapter provides an overview of Proteome Discoverer functionality and discusses in detail its user interface.

Contents

- Proteome Discoverer User Interface
- Understanding Proteome Discoverer
- Proteome Discoverer Features
- Using Proteome Discoverer
- Search Algorithms Overview
- Raw Data, Results, Reports, and Analysis
- Proteome Discoverer Workflow
- Quantitation Overview
- Qual Browser Overview
- InforSense Protein Annotation Discussion

Proteome Discoverer User Interface

In the Proteome Discoverer window, you can process data and view reports. You can customize the toolbar, and launch these tools easily from the main window.

Main Window and Navigation

Figure 1, shows the toolbar options and button names. The buttons give you quick access to the following:

- Views
- Search wizards
- Administrative options and features

Use the toolbar handle to move a group of buttons to a different location on the toolbar. The Customize menu provides options to change the visual appearance of Proteome Discoverer.

Figure 1. Proteome Discoverer window

You can open two or more types of reports and the administration pages at the same time, as shown in Figure 2.

Figure 2. Results reports displayed in the Proteome Discoverer window

Results reports

	<u>File Vi</u> e	w (earch Re	port Quanti	tation <u>P</u> roce:	ssing Workflov	w <u>E</u> ditor <i>i</i>	<u>\</u> dministra	tion]	<u>T</u> ools <u>Wi</u> n	dow <u>H</u> elp		
Column	i 🕼 📙		0. 😥	💿 📀		L 🖪 👿 🗸	X E		. 😪	SEQUEST	🕀 Mascot 🙀	ZCore 🚚 指 🛔	1.22 @ -
Chooser	NPQ-	9-Pro	ot-ETD-	2-10-07-run	58-mascotd	ecoy.msf 🗙	PeptideL	oss_6-27	-02_run	127B.msf	×		
	Protein	IS P	eptides	Search Input	: Filters P	eptide Confidenc	ce Searc	h Summa	ry I				
	F		Acc	ession #	Coverage	# Peptides	#AAs	Score	e ⊽			Description	
	.		gi1292	93	25.65 %	25	386	:	217.63	OVALBUM)	in (plakalbumin) (ALLERGEN GAL D 2	!) (GAL D II)
	÷		gi1154	53	23.55 %	13	259		111.17	CARBONI	C ANHYDRASE II (CA	RBONATE DEHYDR	RATASE II)
	÷		gi5437	94	14.99 %	23	607		110.75	SERUM AL	BUMIN PRECURSOR		
	+		gi1179	70	40.95 %	39	105		79.12	CYTOCHR	OMEC		
	÷		gi1276	38	30.52 %	9	154		70.07	MYOGLOB	IN		
	÷.		gi1345	987	3.28 %	6	609		50.03	ALPHA-FE	TOPROTEIN PRECU	RSOR (ALPHA-FET	oglobulin) (Alpi
		2		Seq	uence	# Proteins	# Protein	Groups	Activa	ation Type	Modifications	IonScore 🗸	Exp Value
	····	I		YLYEIAR		3		2		ETD		45	7.0E-003
	····	I		YLYEIAR		3		2		ETD		42	1.6E-002
	· · · ·	1	•	TRAALGV		1		1		ETD		22	1.6E+000
	· · · ·	1	•	TRAALGV		1		1		ETD		12	1.7E+001
			•	TRAALGV		1		1		ETD		11	1.9E+001
			•	AATILK		1		1		ETD	T5(Phosp)	11	1.8E+001
			Aco	ession #	Coverage	# Peptides	#AAs	Score	e ⊽			Description	
	÷		gi1373;	219	4.22 %	37	2344		49.64	(U54983)	polyprotein (Rabbit I	nemorrhagic diseas	e virus] [MASS=25
	÷		gi7362i	33	5.42 %	42	2344		49.64	(Z29514)	ORF1 [Rabbit hemori	rhagic disease viru	s][MASS=257122]
	• •	<u> </u>	gi6708:	3	4.31 %	38	2344		49.64	genome po	olyprotein - rabbit he	morrhagic disease	virus [MASS=2571
	•	<u> </u>	gi7769	710	5.22 %	42	2338		49.64	(AF25861)	8) polyprotein [Rabb	it hemorrhagic dise	ase virus][MASS=
	<u> </u>		gi4626	77	8.50 %	3	153		48.75	MYOGLOB:	IN		
Beady 247/247 Protein(s), 45181/45181 Pentide(s), 8463/8463 Search Inni						247/	247 Protein	(s), 45181	/45181	Peptide(s),	, 8463/8463 Search	Input(s)	

Menus

Proteome Discoverer has two broad types of toolbar menus to access tools:

- Display reports and views
- Configure database files and displays

The following are menu choices:

- Shortcut Menus
- File Menu
- Search Report Menu
- Search Report Menu
- Quantitation Menu
- Processing Menu
- Workflow Editor Menu
- Administration Menu
- Tools Menu
- Window Menu
- Help Menu

Shortcut Menus

Proteome Discoverer reports and views have shortcut menus with features you can use to help analyze data.

• Right-click anywhere in a view to display the shortcut menu. Figure 3 shows the View shortcut menu with commands to zoom into the chromatogram or copy it, or save the view to be included in another program.

Figure 3. View shortcut menu

View shortcut menu

• Right-click anywhere in a report to display its shortcut menu as shown in Figure 4.

Figu	re 4. Report shortcut menu	
	Show Top Match Peptides Only	×.
	Show Peptide Groups	
	Show Filtered Out Rows	
	Enable Protein Grouping	
	Mass Tolerance Unit	►
	Row Numbers	۲
	Copy Ctrl+C	
	Copy With Column Headers	
	Export to Excel Workbook	
	Enable Row Filters	
	Show 'Group By Column' Panel	

File Menu

Use File menu commands (see Table 1) to open, close, or save your reports; connect or disconnect from a server; import a Bioworks .srf file; and close Proteome Discoverer.

 Table 1.
 Description of File menu commands (Sheet 1 of 2)

Feature	Description	Menu access	Shortcut key access	Toolbar access
Open report	Use to upload a report.	File > Open Report	CTRL+O	6
Save report	Use to save a modified report.	File > Save Report		
Close	Use to close a report without saving any modifications, such as applying filters. Proteome Discoverer remains open after the report is closed.	File > Close		
Import Search Results from SRF	Import search results that are in SRF format.	File > Import Search Results from SRF		
Connect to Server	(only if the Client_Server feature is licensed) Select a different server to use for your search process.	File > Connect to Server		

Table 1.	Description of File menu	commands (Sheet 2 of 2)
----------	--------------------------	-------------------------

Feature	Description	Menu access	Shortcut key access	Toolbar access
Disconnect from Server	(only if the Client_Server feature is licensed) Select the server to disconnect from.	File > Disconnect from Server		
Exit	Close Proteome Discoverer and all opened views and reports without saving any unspecified modifications.	File > Exit		

Search Report Menu

Use the Search Report menu to access views and export commands.

Table 2.	Description of	he Search Report menu	i commands (Sheet 1 of 2
----------	----------------	-----------------------	--------------------------

Feature	Description	Menu access	Shortcut key access	Toolbar access
Show Details	When you select a protein row, the Protein Identification Details view appears. When you select a peptide row, the Peptide Identification Details view appears.	Search Report > Show Details	CTRL+D	
Show Distribution Chart	Assess different aspects of the search results including scores, delta masses, retention times, and such by plotting them in relationship to each other.	Search Report > Show Distribution View	CTRL+SHIFT+D	
Show proteins covered by this set of peptides	Explores what proteins are present and their associations through related peptides.	Search Report > Show proteins covered by this set of peptides	CTRL+SHIFT+H	6
Show Chromatogram View	Shows the intensities of one or more masses as a function of time.	Search Report > Show Chromatogram View	CTRL+SHIFT+C	M
Show Spectrum	Shows the MS/MS spectrum that was used for the peptide search.	Search Report > Show Spectrum	CTRL+SHIFT+S	Lulu.

Feature	Description	Menu access	Shortcut key access	Toolbar access
Show Fragment Match Spectrum	Shows the MS/MS spectrum used for the search, annotated with the fragments that have been assigned within a predefined mass tolerance.	Search Report > Show Fragment Match Spectrum	CTRL+SHIFT+F	Lulu
Show Isotope Pattern	Shows a detailed perspective of the MS scan of the precursor isotope pattern of the selected precursor.	Search Report > Show Isotope Pattern	CTRL+SHIFT+P	
Show Sequence Comparison	Displays the complete sequences for different proteins associated with a single peptide.	Search Report > Show Sequence Comparison		
Show Extracted Ion Chromatogram	Shows the extracted mass chromatogram of the precursor mass of the selected peptide.	Search Report > Show Extracted Ion Chromatogram	CTRL+SHIFT+T	
Export Xcalibur Exclusion List	Exports the exclusion list, which is defined in this Search Report option.	Search Report > Export Xcalibur Exclusion List		
Export Spectra	Exports the spectra, which is defined in this Search Report option.	Search Report > Export Spectra		
ProtXML	Exports selected rows into prot format.	Search Report > Export ProtXML		
Layout	Provides a menu of options to save result layout.	Search Report > Layout		
Peptide Consensus View	A graphic view of the ion and peptide search results data.	Search Report > Show Peptide Consensus View		$\overline{\bigcirc}$

 Table 2.
 Description of the Search Report menu commands (Sheet 2 of 2)

Quantitation Menu

Use the Quantitation menu to access the quantitation methods.

Table 3. Description of the Quantitation menu commands

Feature	Description	Menu access	Shortcut key access	Toolbar access
Edit Quantitation Method	Edits the quantitation method of the current report.	Quantitation > Edit Quantitation Method		2
Show peptide ratios	Shows the peptide ratios per protein view.	Quantitation > Show Peptide Ratios	CTRL+SHIFT+R	Lin
Show Reporter Intensities	Shows the reporter intensities view.	Quantitation > Show Reporter Intensities	CTRL+SHIFT+N	Lulu
Show Quantitation Spectrum	Shows the spectrum used for quantitation.	Quantitation > Show Quantitation Spectrum	CTRL+SHIFT+Q	Lu

Processing Menu

Use the wizards from the Processing menu to start your search process with predefined workflows. Process your .raw files and scans based on the parameters you set in the wizard. To establish your own search process, use the Workflow Editor Menu.

Workflow Editor Menu

Use the Workflow Editor to customize your search workflow, so you do not have to use the predefined search wizards.

 Table 4.
 Description of the Workflow Editor menu commands (Sheet 1 of 2)

Feature	Description	Menu access	Shortcut key access	Toolbar access
New Workflow	Opens Workflow Editor page.	Workflow Editor > New Workflow		
Open From Template	Opens existing saved data analysis workflow.	Workflow Editor > Open From Template		R
Save As Template	Saves a workflow.	Workflow Editor > Save As Template		

Feature	Description	Menu access	Shortcut key access	Toolbar access
Auto Layout	Automatically adjusts and aligns the connecting arrows and nodes.	Workflow Editor > Auto Layout		1
Start Workflow	Begins the data analysis search using your selected workflow.	Workflow Editor > Start Workflow		
Import Workflow from XML	Imports a data analysis workflow from data in XML format.	Workflow Editor > Import Workflow from XML		
Export Workflow to XML	Exports your workflow into an XML formatted file.	Workflow Editor > Export Workflow to XML		

Table 4. Description of the Workflow Editor menu commands (Sheet 2 of 2)

Administration Menu

Use the Adminstation menu to manage processed data, methods, and job queues.

Table 5.	Description	of the	e Administration	menu	commands	(Sheet 1	l of 2)
----------	-------------	--------	------------------	------	----------	----------	---------

Feature	Description	Menu access	Shortcut key access	Toolbar access
Show Job Queue	Displays the search queue and the status of current job searches.	Administration > Show Job Queue	CTRL+J	
Open .msf	Opens a recently completed, hightlighted report in the job queue.	Administration > Show Job Queue > Open Report		
Maintains FASTA Files	Adds, removes, and modifies FASTA files.	Administration > Maintain FASTA Files		6
Maintain Chemical Modifications	Sets the chemical modifications to be used in the search process.	Administration > Maintain Chemical Modifications		-
Maintain Cleavage Reagents	Adds, removes, and modifies the cleavage reagents.	Administration > Maintain Cleavage Reagents		
Maintain Quantitation Methods	Maintains and edits known quantitation methods.	Administration > Maintain Quantitation Methods		

Feature	Description	Menu access	Shortcut key access	Toolbar access
Configuration	Configuration of parameters used in all searches.	Administration > Configuration		5
Manage Licenses	View license status and add new licenses.	Administration > Manage License		*

Table 5. Description of the Administration menu commands (Sheet 2 of 2)

Tools Menu

Table 6. Description of the Tools menu commands

Feature	Description	Menu access	Shortcut key access	Toolbar access
Open QualBrowser	Launches QualBrowser.	Tools > Qual Browser	CTRL+SHIFT+B	LLL
Open InforSense	Launches InforSense.	Tools > InforSense	CTRL+SHIFT+I	Lila
FASTA Database Utilities	Appends and adds to an existing FASTA file.	Tools > FASTA Database Utilities		

Window Menu

Use the Window menu to see all of the open windows available to view in your session of Proteome Discoverer.

Feature	Description	Menu access
Close All Windows	Closes all the open windows of your Proteome Discoverer session.	Windows > Close All Windows

Help Menu

Use the Help menu to access the Help and to determine the revision number of Proteome Discoverer.

Table 7. Description of the Help menu commands

Feature	Description	Menu access	Short key access	Toolbar access
About Proteome Discoverer	Displays the install version of Proteome Discoverer and its components. Shows the Thermo Fisher Scientific copyright notice.	Help > About Proteome Discoverer		
Proteome Discoverer Help	Opens Proteome Discoverer Help.	Help > Proteome Discoverer Help	F1	

Understanding Proteome Discoverer

Use Proteome Discoverer to identify proteins from the mass spectra of digested fragments. The following concepts are highlights of Proteome Discoverer:

- Works with peak-finding search engines, such as SEQUEST[™], Mascot[™], and ZCore[™], to process all data types collected from low- and high-mass accuracy MS instruments.
- Produces complementary data from a variety of dissociation methods and data-dependent stages of tandem mass spectrometry.
- Combines, filters, and annotates results from several search database engines and from multiple analysis iterations.

The peak-finding software searches the raw MS data and outputs a peak list and relative abundances. The peaks represent the peptides for a given mass and charge.

In the next step, the search engine correlates the uninterrupted tandem mass spectra of peptides with databases, such as FASTA. See "Databases and Sample Files" on page 18. Figure 5 outlines a standard workflow you can use with Proteome Discoverer.

Figure 5. Searching spectra flowchart

Proteome Discoverer Features

Proteome Discoverer includes the following features:

- Multiple search engines. See "Working with Search Wizards."
- Workflow editor for searching with multiple algorithms and merging results from multiple dissociation techniques. See "Using the Proteome Discoverer Workflow Editor."
- Database search results available from multiple raw files in a single protein/peptide report See "Understanding Reports and Views."
- Ability to export a peptide/protein report. See "Exporting Data to Other Programs."
- Integration with a local MASCOT installation.
- Ability to run tasks concurrently, such as database indexing and database searching.
- During database searching, the user interface remains responsive.

- Ability to import standard spectrum data formats, such as mzDATA, mzXml, and MGF.
- Ability to export standard spectrum data formats, such as mzDATA, dta, and MGF.
- Exports all or filtered results to the protXML format. See "Exporting Data to Other Programs."
- Merges filtered or unfiltered search results.
- Displays graphic comparisons of two or more protein sequences.
- Support for a FASTA database manager tool. See "Using FASTA Database Utilities."
- Connection to InforSense annotation workflows. See "InforSense Protein Annotation Discussion."
- Integration with GO[™] annotation, through InforSense, for proteins in summary results. See "InforSense Protein Annotation Discussion."
- Support for TMT[™] quantitation. See "Peptide Ratio Calculation."
- Support for iTRAQ[™] quantitation. See "About iTRAQ Quantitation."
- Support for HMA ETD-Orbitrap data analysis.

Combining the traditional sensitivity of SEQUEST with the stringency of a probability-based scoring algorithm, Proteome Discoverer provides the flexibility to complete results and improve confidence in your peptide and protein matches.

Using Proteome Discoverer

With Proteome Discoverer, you can conduct data analysis searches of your spectrum using the search wizards or the Workflow Editor.

The Proteome Discoverer search wizards are predefined to quickly set your search parameters and get your results. There is one wizard for each of the supplied search engines: ZCore, SEQUEST, and Mascot.

For additional information on how to use the wizards, see "Working with Search Wizards" on page 29.

The Workflow Editor provides greater flexibility to create custom search results. Use the three-pane display to create a custom workflow. For additonal information, see "Using the Proteome Discoverer Workflow Editor" on page 49.

The next sections describe the following:

- Search Algorithms Overview
- Raw Data, Results, Reports, and Analysis
- Databases and Sample Files

Search Algorithms Overview

Proteome Discoverer has search algorithms, ZCore, SEQUEST and Mascot; each produces complementary data. ZCore and SEQUEST are peptide search engines distributed by Thermo Fisher Scientific. Mascot is a protein identification search engine created by Matrix Science.

Mascot uses mass spectrometry data to identify proteins from primary sequence databases. ZCore is specifically developed and optimized to evaluate both high-mass accuracy and low-mass accuracy ETD and ECD data. SEQUEST is capable of analyzing three types:

- Electron-transfer dissociation (ETD)
- Electron-capture dissociation (ECD)
- Collision-induced dissociation (CID)

ETD and CID ion fragmentation methods produce distinct ion fragment sets:

- ETD and ECD generate primarily C and Z ion fragments.
- CID generates primarily B and Y ion fragments.

Frequently, peptides identified by CID are not observed with ETD and vice versa so that combining results from CID and ETD can enhance sequence coverage. Many times CID and ETD identify the same peptides, often with different precursor ion charge states. Combining ETD and CID results improve confidence in identifications.

Overview of Processing, Analyzing, and Interpreting Raw Data

Through user-specified settings in Proteome Discoverer, ZCore and SEQUEST algorithms can search, filter, and sort raw file data. In addition to creating reports from the analyzed data, Proteome Discoverer extracts relevant MS/MS spectra from the .raw file and determines the precursor charge state. Proteome Discoverer filters remove false positives and other non-relevant information with a variety of user-specified methods.

Note You can filter data according to false discovery rates that you define through the use of reverse FASTA databases.

The following briefly outlines how to use Proteome Discoverer when processing, analyzing, and interpreting your MS data. See the flowchart in Figure 6 for more details.

- 1. Open a .raw file with Proteome Discoverer and define your configuration.
- 2. Select the activation and instrument types to initiate preprocessing; Proteome Discoverer automatically initates spectral preprocessing.
- 3. Select your search parameter settings and begin a search. Proteome Discoverer initiates a search against a FASTA database.
- 4. Review the generated reports and interpret the search results.

- 5. (Optional) Quantify the peptide ion ratios.
- 6. Review the data.

Figure 6 outlines a more detailed look at a standard workflow in Proteome Discoverer.

Figure 6. Using Proteome Discoverer to process, analyze, and interpret raw data

Mascot is a protein identification search engine created by Matrix Science.

Mascot Search Algorithm

Mascot uses mass spectrometry data to identify proteins from primary sequence databases. Mascot is unique in that it integrates all of the proven methods of searching. These different search methods can be categorized as follows:

- Peptide Mass Fingerprint: the experimental data are peptide mass values. A mass spectrum of the peptide mixture (an enzyme digested protein) provides a fingerprint of great specificity. So specific, that it is often possible to identify the protein from this information alone.
- Sequence Query: the peptide mass data is combined with amino acid sequence and composition information.
 When it is difficult determining a complete peptide sequence from an MS/MS spectrum, it can still be possible to find a series of peaks providing three or four residues of sequence
- MS/MS Ion Search: uninterpreted MS/MS data from one or more peptides. The MS/MS ions search accepts (mass and intensity pairs) peak lists. Only a single peptide may be searched, but this search mode is much more powerful when analysing an LC-MS/MS run containing data from multiple peptides. If you obtain matches to a number of peptides from a single protein you get a very high level of confidence for a correct result.

For more details on Mascot, visit www.matrixscience.com.

ZCore Search Algorithm

data.

ZCore is specifically developed and optimized to evaluate both high-mass accuracy and nominal-mass accuracy ETD and ECD data. You can use ZCore to identify ETD and ECD MS/MS fragmentation spectra of precursor ions charge states between 2 and 7.

The ZCore search algorithm correlates experimental MS/MS spectra through comparisons to theoretical, in silico, peptide candidates derived from protein databases, even when sample sizes are limited and the signal-to-noise ratio of the spectra is low. ZCore evaluates the quality of the fragmentation spectrum and scores the spectra.

You can extract specific information from your results through the interactive data summary screens. With a click you can examine a fully annotated MS/MS spectrum or view the percent peptide coverage of an identified protein.

ZCore provides excellent search results on data acquired with Thermo Scientific ion trap mass spectrometers. Default search parameters are set in parts per million (ppm). Using accurate mass windows decreases the search time and increases the accuracy of the result, decreasing the false positive rate.

To distinguish a correct peptide match from an incorrect peptide match, the ZCore algorithm uses two calculations, a probability-based scoring of the fragment ion distribution and the total fraction of covered fragment ion intensity. The score is reported as a probability (using a -log10 value system) as well as an expectation value.

SEQUEST Search Algorithm

SEQUEST is specifically developed and optimized to evaluate both high-mass accuracy and low-mass accuracy ETD, ECD, and CID data. You can use SEQUEST in combination with automated LC/MS/MS and intelligent data acquisition tools to ensure the routine identification of low-abundance proteins in complex mixtures.

Proteome Discoverer extracts relevant MS/MS spectra from the .raw file and determines the precursor charge state and the quality of the fragmentation spectrum.

The SEQUEST search algorithm correlates experimental MS/MS spectra through comparisons to theoretical, in silico, peptide candidates derived from protein databases. The proprietary cross-correlation identification algorithm at the core of SEQUEST uses a sophisticated scoring system to help assess results. SEQUEST looks for characteristic spectral patterns and then critically evaluates the equivalence of experimental and theoretical MS/MS spectra. The identification algorithm extracts information and correctly identifies proteins even when protein samples sizes are limited and the signal-to-noise ratio of spectra is low.

You can extract specific information from your results through the interactive data summary screens. With a click you can examine a fully annotated MS/MS spectrum, or view the percent peptide coverage of an identified protein.

SEQUEST provides excellent search results on data acquired with Thermo Scientific ion trap mass spectrometers. Default search parameters are set in parts per million (ppm). Using accurate mass windows decreases the search time, increases the accuracy of the result, and decreases the false positive rate.

The Proteome Discoverer probability-based scoring system rates the relevance of the best matches found by the SEQUEST algorithm. With this probability-based scoring, Proteome Discoverer can independently rank the peptides and proteins, and increase the confidence in protein identification. Additionally, this scoring system minimizes the time needed for data interrogation or results review, increasing the overall throughput of the analysis.

You can also determine false discovery rates using reverse databases. Comparison of the results with forward and reversed databases provides an additional means of increasing confidence in protein identification.

Raw Data, Results, Reports, and Analysis

Proteome Discoverer has extensive options for exporting data and results into other file formats such as XML.

You can use reports to analyze and share your results. To create reports, use available file formats such as XML and Excel[™]. Define your report parameters through your Search Results view.

Databases and Sample Files

Proteome Discoverer includes the FASTA database (see page 62) and example .raw files. Use these files when exploring and learning how to use Proteome Discoverer.

Note If you have Bioworks installed, you can select the option to download the FASTA files.

The FASTA databases, supplied with the Proteome Discoverer program, are located in the Xcalibur database folder.

Proteome Discoverer Input and Output File Types

Proteome Discoverer accepts and creates the file types listed in Table 8.

File extension	File name definition	Description	File type
.dta	Mass spectral files produced during SEQUEST or ZCore analysis	Contains MS <i>n</i> data for single or grouped scans.	Output
.raw	Raw data	Raw data collected from an instrument.	Input
.msf	Mass spectrum search files	Contains relevant information from three separate sources (DTA file data, OUT file data, and setup information) - created by Proteome Discoverer.	Input and output
.out	Internal data files	Temporary output data file.	Output and input
.srf	Unified search files	Contains relevant information from three separate sources - not used by Proteome Discoverer.	Input only

 Table 8.
 File types

Proteome Discoverer Workflow

In the Node Selection pane are five categories of different workflow choices. A typical workflow uses two or more options from these categories shown in Table 9. To start a new workflow, use a node from the Data Input category. See "Discoverer Workflow Nodes Details" on page 57 for detailed descriptions.

Workflow category	Workflow node	Notes
Data Input:		
	Rawfile Selector	
	Spectrum Selector	
	SRF File Selector	.srf files are for input only.
Spectrum Processing:		
	ETD Spectrum Charger	
	Noise Peak Filter	
	Non-Fragment Filter	Removes peaks from an MS/MS spectrum that are not likely to be fragment peaks. Restricted to precursor ion peaks present in ETD and ECD spectra.
	Spectrum Grouper	Use group spectra from MS2 and MS3 scans together. Set Allow MS Order Mismatch to true; the default is false.
	Spectrum Normalizer	
	Xtract	Xtract only works with high-resolution data.
Spectrum Filters:		
	Scan Event Filter	
	Spectrum Properties Filter	
	Spectrum Score Filter	
Peptide/Protein ID:		
	Mascot	
	SEQUEST	

Table 9. Workflow nodes (Sheet 1 of 2)

ladie 9.	Workflow hode	s (Sneet Z of Z)	
Workflow	v category	Workflow node	Notes
		ZCore	ZCore can only process ETD spectra.
Quantita	ation:		
-		Reporter Ions Quantitizer	
Data Exp	port:		
		Spectrum Exporter	

Table 0 Markflow padag (Sheet 2 of 2)

For more information, see "Using the Proteome Discoverer Workflow Editor" on page 49.

Quantitation Overview

The quantitation section discusses iTRAQ and isobaric tandem mass tag (TMT) quantitation methods. The menu command, Quantitation > Edit Quantitation Method, is reserved only for reports analyzed by a Workflow Editor template that uses the Reporter Ions Quantitizer node.

CAUTION To access the quantitation menu option, you must first run a workflow template that uses the Reporter Ions Quantitizer node

See "How to Quantify Your Data Using Adminstration and Workflow" on page 67.

About iTRAQ Quantitation

iTRAQ[™] is a protein quantitation technique that uses four or eight isobaric aminespecific tags. In single MS mode the differentially labeled versions of a peptide are indistinguishable. In tandem MS mode, where peptides are isolated and fragmented, each tag generates a unique reporter ion. You can derive protein quantitation by comparing the intensities of the four reporter ions in the MS/MS spectra.

Peptide Ratio Calculation

Protein ratios are the median of the peptides of the protein. If you want to recalculate, you must clear the Show Top Match Peptides only option so that all peptides are displayed. By default only unique peptides are considered in the calculation so that only peptides that have no other protein references are considered.

The menu command, Quantitation > Show Peptide Ratios, is reserved only for reports analyzed by a Workflow Editor template with the Reporter Ions Quantitizer node, (see Figure 7). Quant

Show Reporter Intensities

Protein ratios are the median of the peptides of the protein. If you want to recalculate, you must clear the Show Top Match Peptides only option so that all peptides are displayed. By default only unique peptides are considered in the calculation so that only peptides that have no other protein references are considered.

The menu command, Quantitation > Show Reporter Intensities, is reserved only for reports analyzed by a Workflow Editor template with the Reporter Ions Quantitizer node, Quant (see Figure 7).

Quantitation Spectrum

The menu command, Quantitation > Show Quantitation Spectrum, is reserved only for reports analyzed by a Workflow Editor template with the Reporter Ions Quantitizer node, Quant (see Figure 7).

Figure 7. Example of Workflow Editor for reporter ions experiment and quantitation options post search

Qual Browser Overview

With Qual Browser you can view the entire ion chromatogram and browse individual precursor and MSn data. You can filter the results in a variety of ways, for example, to produce a selected ion chromatogram. When you choose the Tools > Qual Browser command, Proteome Discoverer passes the currently active raw file for Qual Browser operations. See "Using Qual Browser" on page 72 for more information.

InforSense Protein Annotation Discussion

InforSense Protein Annotation is part of the Proteome Discoverer toolset, which automatically determines the biological context of identified peptides.

Annotations are automatically retreived from a public database, such as the National Center for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov/sites/entrez) or the Swiss Institute of Bioinformatics ExPASy proteomics server (www.expasy.com), for each protein identification in the results table. Use InforSense Protein Annotation to obtain predicted and known post-translational modifications, amino acid sequences, and biological functions.

Note When you are in InforSense Protein Annotation application, Proteome Discoverer exports your data into formatted XML files.

See Figure 8, Predefined Thermo Scientific InforSense workflows types, for the different predefined protein identification workflows.

InforSense Workflow Types

Currently two types of information retrieval are available:

- Gene ontology (GO) annotations for your search results
- Metadata for your search results

Each of these has two different options, resulting in four predefined workflows for you to use on your protein MSn data.

Figure 8. Predefined Thermo Scientific InforSense workflows types

Introduction to GO Ontology

The Gene Ontology (GO) project is a collaborative effort, incorporating community input from database and genome annotation groups to address the need for consistent descriptions of gene products in different databases. The GO project has developed three structured, controlled vocabularies (ontologies) that describe gene products in a species-independent manner.

biological processes

cellular components

molecular functions

Each gene ontology is divided into categories and subcategories called GO terms, which define the protein in more specific terms. For example, **chloroplast**, a term in the cellular component ontology, is subdivided as follows:

chloroplast

[p] chloroplast envelope

- [p] *chloroplast* membrane
 - [i] chloroplast inner membrane
 - [i] chloroplast outer membrane

You can obtain more information at the GO Ontology site: www.geneontology.org/.

Introduction to Metadata Retrieval

Two Metadata workflows are available through Proteome Discoverer: Metadata Table NCBI (NCBI Web service) and Metadata Table SwissProt (ExPASy Web server). As noted earlier, each takes an XML output from Proteome Discoverer, extracts the protein accession numbers (translates them if necessary), and submits the corresponding accession numbers to the appropriate Web service. The workflow retrieves descriptive data for each accession submitted and then parses the data into different categories, including the sequence positions for known and potential post-translational modifications and metal binding sites.
Using Proteome Discoverer

Proteome Discoverer offers a variety of tools and features to assist you with spectrum analysis. This chapter discusses options that are most often used in Proteome Discoverer and describes methods of analysis.

The quickest way to get started with Proteome Discoverer is to define your search parameters by using the search wizards.

Contents

- How Proteome Discoverer Fits Into Your Lab Workflow
- Overview of Menu Options
- Working with Search Wizards
- Search Results, Reports, and Analysis
- Using the Proteome Discoverer Workflow Editor
- Working with Reports
- Working with the Search Job Queue
- Using FASTA Database Utilities
- Working with Chemical Modifications
- How to Quantify Your Data Using Adminstration and Workflow
- Using Qual Browser
- Job Queue
- InforSense

How Proteome Discoverer Fits Into Your Lab Workflow

Figure 9 depicts a typical protein identification and characterization experimental workflow. Discoverer analyzes spectral data from all Thermo Scientific mass spectrometers.

Figure 9. Flow chart of typical protein identification

Features of Proteome Discoverer used in protein identification and analysis:

- Open .msf files: Multiple open options to evaluate your results.
- Job queue: Used to observe the spectrum search process.
- Workflow Editor: Used in an interactive way to build your search algorithm.
- Chemical modifications: Used to build and maintain the static and dynamic modifications data.
- Ability to quantify and annotate your results.

Overview of Menu Options

Proteome Discoverer features a diverse and multi-level user interface. You can choose your user paths, such as opening a report by choosing the menu command, File > Open Report (CTRL+O), or clicking the open reports icon (

This section discusses both the options to graphically display spectra, tables lists, and also procedural methods to access the user interface features when working with raw data, results, reports, and analysis of reports.

The next sections describe the following:

- File Menu
- Working with Search Wizards
- Search Results, Reports, and Analysis

Start Proteome Discoverer

To open Proteome Discoverer

To open Proteome Discoverer from your desktop, choose **Start > Programs > Thermo Proteome Discoverer > Proteome Discoverer 1.0**.

Proteome Discoverer displays an empty startup window. From this window you can open search results, administer your session, or start a search.

File Menu

The File menu opens saved reports, saves and closes open reports, and imports search results in .srf format. Figure 10 shows details of these options.

Figure 10. File menu options

3	Thermo Proteome D	iscoverer 1.	0
<u>Fi</u> le	<u>Vi</u> ew <u>S</u> earch Report	Quantitation	Pr
6	Open Report	Ctrl+O	C
I,	<u>S</u> ave Report	Ctrl+S	c
	<u>C</u> lose		
	Import Search Results f	rom SRF	9 2/
	E <u>xi</u> t		?

- To open one or more reports
- 1. Choose File > Open Report.
- 2. Select a single file of interest or multiple files, using the CTRL key.

Figure 11. Proteome Discoverer initial view

To exit and close all views and reports

- 1. Choose **File > Save Report** to save your changes.
- 2. Choose Workflow > Save as Template to save your workflow editor.
- 3. Click the data file **Filters** tab. Click **Save**... to save your filter settings.
- 4. In the Proteome Discoverer window, choose **File > Exit**.

To change view size

You can turn on the feature to show large images on the tool bar.

- 1. Right-click anywhere on the tool bar. A shortcut menu appears.
- 2. Choose Customize...
- 3. Click the **Options** tab.
- 4. Select the desired check boxes.
- 5. Click **OK**.

✤ To turn on the animation option

You can turn on the feature to show large images on the tool bar.

- 1. Right-click anywhere on the tool bar. A shortcut menu appears.
- 2. Choose Customize...
- 3. Click the **Options** tab.
- 4. Under Menu Animations, select the desired option.
- 5. Click **OK**.

Working with Search Wizards

You can access three wizard options from the processing menu: SEQUEST, Mascot, and ZCore. Figure 12 shows details of these options.

Figure 12. Three wizard options from the processing menu

👬 Therm	🚜 Thermo Proteome Discoverer 1.0.37									
<u>Fi</u> le <u>Vi</u> ew	Search Report Quantitation	Pro	tessing	Workflow E	ditor	<u>A</u> dminis	stration	<u>T</u> ools		
i 💕 📕 .	, 🗔 🔤 🔯 🐼 🛄	R	Start S	EQUEST Sea	irch Wiz	ard	Ctrl+	FQ L		
NPQ-9-	Prot-ETD-2-10-07-run58-ma	-	Start M	lascot Searcl	h Wizar	d	Ctrl+	нм		
Proteins	Peptides Search Input Filte	-	Start Z	Core Search	Wizard		Ctrl-	+E		
2	Accession # Cove	rade	# P	entides	#AAs	50	ore	V		

Use the Proteome Discoverer search wizards to set the search parameters, select a database and a search engine, and select the chemical modifications to be used to conduct your search. When using the search wizards, you must define four key settings:

- A .raw file
- An activation type
- A FASTA file
- A unique name for your search results

You can also set dynamic and static chemical modifications. Figure 13 defines the logical flow of the search engine wizard.

Figure 13. Proteome Discoverer search wizard process

The following procedure describes how to use a search wizard, using SEQUEST as the example.

To use the SEQUEST Search Wizard on a raw file

- 1. Choose **Processing > Start SEQUEST Search Wizard**. The wizard dialog box appears.
- 2. Click Next. The Rawfile and Scan Range Selection page appears. See Figure 14.

Figure 14. Rawfile and Scan Range Selection page

- 3. Set your basic search parameters:
 - a. To find and select a .raw file, click the browse button (...).
 - b. To select a scan range, press CTRL and drag your mouse over the desired range.
- 4. Click **Next** to move to the next page. The Scan Extraction Parameters page appears. See Figure 15.

Figure 15. Scan Extraction Parameters page

Set activation type Define thresholds Sequest Search Wizard Scan Extraction Parameters Define the parameters used for the scan extraction process. Limits and Thresholds First Mass: 350.0 Da 💌 Last Mass: 5000.0 Da 💌 Activation Type: Any v Unrecognized Charge Replacements: Automatic 💌 Intensity Threshold: 0.00 Minimum Ion Count: 1 \$ S/N Threshold: 3.00 **Grouping Parameters** Group Spectra Precursor Mass Criterium: Same Measured Mass-to-Charge ~ Precursor Tolerance: 10.0 ppm 💌 Max. RT Difference (min): 1.50

< Back

Next>

Cancel

Group spectra

- 5. Set the scan extraction parameters:
 - a. Enter the first and last mass limits.
 - b. Set the mass units.
 - c. Select an activation type.
 - d. Type a value for the intensity threshold.
 - e. Type a value for the minimum count.
 - f. Type a value for the signal-to-noise threshold setting.
 - g. (Optional) Determine your grouping parameters (see Table 10).

Search summary parameter	Corresponding Search Wizard parameter	Description
Allow Mass Analyzer Mismatch	Not available in the wizards.	(Only for scans with the same precursor mass) When set to True, the fragment spectrum is sorted into the same group regardless of mass analyzer and activation type. Example: Both ITMS and FT-MS MS/MS scan are sorted into the same group as long as they have the same precursor mass. When set to 'False' the same two scans are added to separate groups.
Maximum Retention Time Difference	Max RT Difference	Sets the chromatographic window for the ions which are considered to be the same species, thereby adding to the same group. For example m/z 619 that elutes at 37.76 minutes is different from m/z 619 that elutes at 47.10 minutes

Table 10. Four parameters that define the grouping criteria

Search summary parameter	Corresponding Search Wizard parameter	Description
Precursor Mass Criterion	Precursor Mass Criterion	 Same Measured Mass-to-Charge: For the chromatographic peak at 37.76 minutes, only MS/MS fragment spectra that have <i>m/z</i> 619 as the precursor mass are grouped (similar for <i>m/z</i> 1236).
		 Same Singly Charged Mass: For the chromatographic peak at 37.76 minutes, MS/MS fragment spectra that have 619 or 1236 are grouped because both ions have the same singly charged mass. The charge associated with the combined peak list is the highest charge of the precursors in the group.
Precursor Mass Tolerance	Precursor Mass Tolerance	Sets the mass window where precursor ions are considered to be the same species, thereby adding to the same group.

Table 10. Four parameters that define the grouping criteria

6. Click Next. The SEQUEST Search parameters page appears.

General Search Parameters	- Decou Database Search
Database: equine.fasta	Search Against Decoy Database
Enzyme: Trypsin Y Full Y	l arget FDR (Strict): U.U1
Missed Cleavages: 2 ᅌ	Target FDR (Relaxed): 0.05
Search Tolerances Use Average Precursor Mass Precursor Mass Tolerance: 10.0 ppm Use Average Fragment Masses	
Search Tolerances Image: Search Tolerance 10.0 ppm Image: Search Tolerance Image: Search Tolerance 10.0 ppm Image: Search Tolerance Image: Search Tolerance 0.8 Da Image: Search Tolerance	
Search Tolerances Image: Search Tolerances	
Search Tolerances Use Average Precursor Mass Precursor Mass Tolerance: 10.0 ppm Use Average Fragment Masses Fragment Mass Tolerance: 0.8 Da Ion Series Calculated a lons Factor: 0 x lons Factor: 0 b lons Factor: 1 y lons Factor: 1	

Figure 16. SEQUEST Search parameters page

- 7. Set the SEQUEST search parameters:
 - a. Select a FASTA database.

Note The available .fasta files are registered and available through this Proteome Discoverer application. See "Using FASTA Database Administration" on page 144.

- b. Define your enzyme type.
- c. Define missed cleavages.
- 8. (Optional) Select the Decoy Database Search option and FDR parameters.

Note The decoy database option is neccesary if you want to see peptide confidence.

- 9. Set the precursor mass search tolerance parameters:
 - a. (Optional) Select the Use Average Precursor Mass option.
 - b. Define the precursor mass tolerance value.
 - c. Choose the precursor mass units (Da, mmu, ppm).

- 10. Set the Ions Series, Calculated parameters as necessary for your experiment type.
- 11. Click Next. The Modifications page appears.
- 12. Analyze your search results:
 - a. On the Job Queue page, click **Open Report** and select your report. Or choose File > Open Report to display your search results.
 - b. Filter and sort your results. See "Working with Filters" on page 84.
 - c. Use different views to aid in your analysis. See "Working with the Initial Results Report" on page 78.

Search Results, Reports, and Analysis

- Understanding Reports and Views
- Search Summary Page
- Protein Grid
- Peptide Grid
- Search Input Page
- Filters Page
- Peptide Confidence Page

You can access search report options from the Search Report menu. Figure 17 shows details of these options.

Understanding Reports and Views

When you open a report, the Proteome Discoverer window displays your search results across multiple pages of descriptive information. Labeled tabs include Proteins, Peptides, Filters, Peptide Confidence, and a summary of the search parameters.

• Click a tab to access the corresponding page.

In the results report, you can navigate to other pages to access detailed information on proteins or peptides. You can also set different types of filtering to sort through your search results.

- Click a row or a cell to access graphical views of the corresponding protein or peptide.
- Click a protein row to access a chromatogram view of the protein or the protein coverage.

Figure 18. An example of the Results Report

🚮 The	rmo	Proteome Disco	verer 1.0.40									
<u>File</u> <u>S</u> e	earch F	Report Quantitati	on Processing \	Workflow <u>E</u> ditor	Administr	ation <u>T</u> ools	<u>Window</u> Help					
1 💕	*	🗔 🛃 🗐 🍕) 💷 🛄	* 🗶 🗉 🖬) »	🍖 SEQUEST	🐅 Mascot 🛛 💐 🚹 🥂 🔚 💥 🧶 🍘 🌉 🌷 🔍 💐					
Admi	Administration X run_iTRAQ_B5A_3ITM52_3HCD-02.msf* X NPQ-9-Prot-CID-2-10-07-run58_bovine.msf* X 🔻											
Protei	ns F	eptides Search I	nput Filters Pe	ptide Confidence	Search	n Summary						
1		Accession #	Coverage	# Peptides	#AAs	Score V	Description					
	Г	gi1083034	23.44 %	1	64	0.00	GTP-binding regulatory protein gamma-2 chain - bovine (fragment)					
•	Г	gi75766367	32.50 %	2	120	0.00	Chain A, Bovine Oligomycin Sensitivity Conferral Protein N-Terminal Dor					
•	Г	gi4164059	2.65 %	2	1512	0.00	latrophilin 3 splice variant abbf [Bos taurus]					
•	Г	gi4164061	3.23 %	2	1240	0.00	latrophilin 3 splice variant abbg [Bos taurus]					
	Г	gi4164063	3.12 %	2	1283	0.00	latrophilin 3 splice variant abbh [Bos taurus]					
	Г	gi4164073	3.06 %	2	1308	0.00	latrophilin 3 splice variant bbbg [Bos taurus]					
	Г	gi4164075	2.96 %	2	1351	0.00	latrophilin 3 splice variant bbbh [Bos taurus]					
	Г	gi217477	8.43 %	1	178	0.00	unnamed protein product [Bos taurus]					
	Г	gi217454	8.43 %	1	178	0.00	unnamed protein product [Bos taurus]					
	Г	gi1083017	12.29 %	1	301	0.00) collectin-43 - bovine					
	Г	gi346508	9.01 %	5	755	0.00) filensin - bovine					
1							· •					
Ready				11/11 F	Protein(s),	12/12 Peptide(s), 6532/6532 Search Input(s)					

Search Summary Page

The Search Summary page is part of the results report. It provides a text version of the parameters that were set to perform a search. The summary page is divided into three categories that contain information about the .raw file, basic spectrum parameters, and search application-specific parameters. The categories represent the nodes used during the various search phases.

- The RawfileSelector section provides the name of the .raw file and the location of the .raw file used to conduct the analysis.
- The SpectrumSelector section contains the basic spectrum parameters. You defined each of these parameters in the Spectrum Extraction phase of the wizard when you prepared your search settings. The SpectrumSelector section contains the parameters used to select and to retrieve information for additional processing.
- The SpectrumGrouping section contains the parameters that are used to group and average the spectrum information.

IMPORTANT You defined each of these parameters in the Spectrum Extraction phase of the wizard when you were preparing your analysis setting. This section is only available if you select the Group spectra option in the wizard.

Protein Grid

The Proteins page displays the proteins and the associated peptides identified during the search results. The Proteins page gives you detailed tabular information, a shortcut menu, and access to the peptide information. Table 11 on page 41 contains descriptions of the available columns in the protein table. To add columns to or remove columns from the table, use the shortcut menu. See "To view the protein grid" on page page 60.

The Proteins page is structured with different levels of access to the protein and peptide results:

- The blue-colored backgound shows rows of identified proteins with the associated statistics.
- The orange-colored background is a second-level table of peptides. Click + to open a protein row to see identified peptides in orange rows.
 - The columns in this second-level grid show detailed statistics for the peptide associated with the theoretical top-level protein.
 - Each row has a colored dot indicating a confidence level associated with the protein sequence at the top level; green for high confidence, yellow for modest confidence, and red for low confidence.

For a visual explanation of the Protein page, see Figures 19 and 20. For descriptions of the protein results, see Table 11 on page 41.

Figure 19. Protein view

	👯 Th	ermo	Pr	oteon	ne Discov	erer	1.0.37	!											
	<u>Fi</u> le j	<u>/i</u> ew	<u>S</u> ea	arch Re	port <u>Q</u> ua	htitati	on <u>P</u> roc	tessing Wo	orkflow <u>E</u>	ditor	<u>A</u> dministration	<u>T</u> ools <u>Wi</u> ndow <u>H</u>	<u>t</u> elp						
Double-click	6	Η.		o, 🖭	💿 📀	[Al	ա	. 🖪 🖥		X E	🔲 🖬 🚽 📢	🍖 SEQUEST 🛛 🦗 M	1ascot 🙀 ZC	ore 🗸	884	16	8 🖣 🤞	6 🗣 🕯	
any cell to see	NPQ-9-Prot-CID-2-10-07-run58-sequestdecoy.msf* ×																		
coverage	Prot	eins	Рер	otides	Search Ing	ut	Filters	Peptide Cor	fidence	Sear	ch Summary								
diagram	F			Acces	ssion #	Co	verage	# Peptid	es 4	#AAs	Score V			Descriptio	on				_
alagram.	÷.		gi	140845	54	26	.57 %		14	572	25.20	(U31671) hemaggl	utinin-neuramin	iidase prot	tein (Bovine	parainf	luenza vir	us 3]	
	.		gi	573228	35	21	.70 %		13	493	23.84	(AF156408) nucleo	protein [influer	nza A viru:	s (A/Chicke	n/Hong	Kong/739	/94(H	
	÷		gi	170665	53	9	68 %		6	434	23.08	ALPHA ENOLASE (2-PHOSPHO-D-	GLYCERA	TE HYDRO-	YASE)	(PHOSPHO	PYRU	
	÷		gi	127691	L	48	.37 %		8	153	22.52	MYOGLOBIN							
	P		gi	573227	73	23	.33 %		13	493	22.18	(AF156402) nucleo	protein [influer	nza A viru:	s (A/Chicke	h/Hong	Kong/G9/9	97(H9	
Click to onen		1	_		Sequen	e DDK	∇ #P	roteins #	Protein	Groups	Activation Typ	e Modifications	Probability	XCorr	∆ Score	Rank	Charge	MH+ [Da]	1
Click + to open								3		2	CID	S7(Phos)	1.00	3.21	0.00	1	2	1656,39873	
the protein row.		•			SSEID GTD			2		- 1	CID	D7(FIIOS)	1.00		Show in P	eptide \	/iew		H
					/ssFIRGTR	111		3		2	CID	S2(Phos) 53	1.00	 Image: A second s	Show Top	Match	Peptides (only 🕨	
					TSDMR			3		2	CID		1.00		Show Pep	tide Gro	oups		
			Г		TEIIR			3		2	CID		1.00		Show Filte	ered Ou	t Rows		
			Г	9 F	RSYEQMETO	GER		3		2	CID	S2(Phos)	1.00	 ✓ 	Enable Pr	otein Gr	ouping		
			Г		QNAtEIRAS	/GR		3		2	CID	T4(Phos)	1.00		Mass Tols	roncol	leit		-
			Γ	9 F	PRIAYERMo	JILK		1		1	CID	C9(Carba)	1.00		Plass Tole		1110		
			Γ	•	MVGGIGR			3		2	CID		1.00		ROW NUM	bers		•	-
	-			9 l	LQNsQVFsl	IR		3		2	CID	S5(Phos) S9	1.00		Сору			Ctrl+C	
		-		•	GTRVIPRGQ	lstR		2		1	CID	S11(Phos) T	1.00		Copy Wit	n Colum	n Headers		
		_		•	AsAGQIsVQ	PEFSV	QR	3	_	2	CID	S2(Phos) S7	1.00	- L L	Export to	Excel V	/orkbook		
	Ē			Acces	ssion #	Co	verage	# Peptid	es 4	#AAs	Score V			Des	Enable Ro	w Filter	5		ī
	÷		gi	104793	-	12	.85 %		17	1268	22.05	neural cell adhesion	n molecule Nr-C	AM p	Show 'Gro	up By C	iolumn' Pa	nel	1
l	+		gi	345685	0	12	.03 %		17	1259	22.05	Bravo/Nr-CAM cell	adhesion mole						

Right-click for options.

Figure 20. Protein coverage diagram

Feature	Description
Accession #	Displays the unique identifier used for the protein. Appears in table by default.
Coverage	Displays the percent coverage of the protein sequence covered by identified peptides. Appears in table by default.
# Peptides	Displays the total number of peptide matches found during the search. Appears in table by default.
#AAs	Shows the sequence length of the protein. Appears in table by default.
Score	Displays the total score of the protein. The score is the sum of the scores of the individual peptides.
Description	Provides the name of the protein excluding the Accession #. Appears in table by default.

Table 11. Protein table

Creating a Report from Multiple Results

Use Proteome Discoverer to combine the results of multiple individual searches into one multiconsensus report. The combined report compiles information on the peptides and proteins identified in individual searches with the percent coverage combined into a unified results table, a multiconsensus report.

To combine results into a report

- 1. From the Proteome Discoverer menu bar, choose **File > Open Report**. A Browse view appears.
- 2. Browse for the .msf files to upload. The files must all be in the same directory.
- 3. Hold down the CTRL key and select the files you need to analyze.
- 4. Click **OK**. A status message appears as the information is organized to display a combined report. The combined, multiconsensus report appears.

Figure 21. Multi Consensus opening message

The combined results from the individual result files are numbered with alphanumeric labels. The columns and labels are defined as follows:

• A number following a letter, such as A3. The number identifies which search node in the workflow was used to create the result file.

- The column headers use labels to designate individual search results.
- Each of the column headers have tooltips that can help to match a search to the correct result column.

On the Proteins page, the individual search identification information, such as protein score, sequence coverage, and number of identified peptides, is displayed side-by-side for each protein (Figure 22). The proteins identified in the individual searches are compared by sequence to align with the results in the report. If the proteins referenced in the individual searches have different accession numbers, the accession number of the first search in the result set is chosen for display.

			Γ	P fi	leptide irst sea	resu rch	ults froi report	m													
				ſ	– Pept secc	Peptide results from Side-by-side results second search report															
_																					
3	Therm	o Pr	cteo	oru	e Discov	Discoverer 1.0.38															
<u>Fi</u> le	<u>S</u> earc	:h Rej	pi rt	2	uantitatio	n P	rocessing	g Worl	kflow <u>E</u> ditor	<u>A</u> dministration <u>T</u> o	ols <u>Wi</u> r	ndow	<u>H</u> elp								
6				2			<u>ما</u> الله		° & ⊡	🛯 💷 义 🙀 s	EQUEST	- 👧	Mascot	» •	8 8 1	u /	*	<u> (</u>) 🖪	- 🐌 🐧	📝 👻
/#	Administ	ratio	n	5	Multi	Cons	5.: 2 Job	s x													-
Pr	oteins	Pep	ot des	٦	Search In	put	Filters	Peptid	e Confidence	Search Summary]										
	西	A	c essi	io i	# #A	As			Descrip	ption		Sco	re A2	Coverage A2	# Peptide	es A2	Scor	re B2	Co	verage B2	
P -		gi8	C914	3		105	Cytochr	ome C					505.29	71.43 %		85		233.10	5	6.19 %	
Þ.		gi4	1 397	15		104	Solution	Structu	re Of Reduced	d Horse Heart Cytoc	nrome		505.29	71.15 %		83		233.10	5	6.73 %	
	P		A2	B2	Sequence # Proteins # Protein Groups Activation Ty							tion Typ	be I	Modifications	IonS	core	E>	(p Value		Identity	Hi
			9		KTGQAPGFTYTDANK 3 2 ETD							ETD				103		1.0E-0)08		- 1
		<u> </u>	•		KTGQAF	PGFTY			3	2	E	ETD				92		1.2E-0	07		
		-	•		TCDNUU	YLENI	PK		5	2	E					/1		1.8E-U	105		- 1
	····		•		FETIME		r DVV		0	3	C					70		2.2E-U	105		- 1
					EETLME				5	2						65		6.8E-0	105		- 1
					TEREDL	TAYLK	(5	2	- -	TD				61		1.7E-0	104		- 1
		Ē	•		EETLME	YLEN	PKK		5	2	F	ETD				60		2.2E-0)04		
		Г	-	•	EETLME	YLEN	РКК		5	1	1	CID				58		3.4E-0	04		
		Г	•		TEREDL	IAYLK	(5	2	E	ETD				58		3.7E-0	04		
			•		EETLME	EETLMEYLENPKK 5 2 ETC										56		4.8E-0	04		
			9		EETLME	ETLMEYLENPK 5 2 ET						ETD				53		1.1E-0	03		
				۲	EETLME	TLMEYLENPK 5 1 CID										48		2.8E-0	003		
				۲	EETLME	YLENF	РК		5	1		CID				47		3.8E-0	003		
				9	EETLME	YLENF	РК		5	1	0	CID				47		4.1E-0	003		
	_	_	_			_		_				_				_					
Read	dy								984/984	4 Merged Protein(s),	55760/5	55760 P	Peptide(s	s), 15020/1502	0 Search	Input(s)					

On the Peptides page, the results shown depend on the settings chosen through the shortcut menu of the results grid. The default setting shows the top hits per peptide and search engine (Figure 22). For the compiled report, the results are in titled and separate columns for the different searches.

If the display options are set to show the peptide matches grouped by peptide sequence, then the identification information from the individual searches is displayed side-by-side, as shown in Figure 22. The grouped peptides do not represent actual matches found during the search but represent the unified information from all matches found for this particular peptide sequence. The peptide information can be accessed by examining the Proteins page for all peptides associated with a protein, and through the Peptides page for all peptides including those not associated with any protein.

As part of the Protein page, you can view the associated peptides. Click + to the right of the protein row to access the peptide rows. When a peptide is identified multiple times, only the top-match peptides are displayed in the table. Right-click to access the shortcut menu, and choose **Show Top Match Peptides Only** to display all the peptides. Table 12 describes the features of the peptide row.

Peptide Grid

The Peptides page displays the peptides and associated proteins that are identified during your search. The initial view is the list of peptides. Click + to the left of a peptide row to access the associated proteins. See "To view the peptide grid" on page 60.

Fiaı	ire	23.	Pent	ides	view
ı ıyı		20.	ιορι	iuco	1010

💓 Т	herm	o Pi	oteo	me Discoverer	1.0.39										
File	Searc	h Re	port	Quantitation Pro	ocessing V	/orkflow <u>E</u> ditor	Administration	<u>T</u> ools <u>W</u> indo	w <u>H</u> elp						
	💕 🛃 🗸 💿 🔤 😡 🔤 📖 🗔 🗔 🐥 💥 🔁 🗔 🔶 🦗 SEQUEST 🚱 Mascot 🛛 🔅 🤱 🕌 👫 👫 💥 🐥 🍭 🚳 🜉 🚇 🌉 📝 🦿														
	NPO-9-Prot-CID-2-10-07-run58-mascotdecov.msf x run iTRAO B5A 3ITM52 3HCD-02.msf x														
	Destrictes Council and Filters Destrict Council Council Council and Council and											_			
Pro	teins	гер	Judes	Search Input	Filters Per	otide Confidence	Search Sumr	nary Quantiti	ation Summary						
E	3			Sequence	# Proteins	# Protein Grou	Activation Ty	Modifications	Probabili V	XCorr	Quan Into	115/114	116/114	117/114	4
•••-) r⊢		2	1	CID	N-Term(ITR	117.79	4.13	Used	1.161	1.055	0.938	- 1
±					2	1	CID	N-Term(ITR	107.01	4.40	Used	0.070	0.094	0.075	
<u>+</u>					2	1	CID	N-Term(ITR	107.01	4.09	Used	0.000	0.949	0.742	-
					2	1		N-Term(iTP	96.08	2.88	Used	1 104	1.062	1 421	-
-					2	1		N-Term(iTD	90.00	4 55	Used	0.917	0.849	1.038	-
-					2	1	CID	N-Term(iTR	84.09	2.13	Used	1 321	1 563	1.886	-
-			ki		2	1		N-Term(iTR	84.07	4 96	Used	0.948	1.005	0.924	-
-			b h	FYAVSVILR	2	1	CID	N-Term(iTR	83.09	4.34	Used	1.094	1,492	1,201	-
-		-	h F	EYAVSVLLR	2	- 1	CID	N-Term(iTR	76.57	3.98	Used	1.087	1.323	1.999	-
-	- r	- 2	> IV	/STOTALA	2	1	CID	N-Term(iTR	75.98	1.59	Used	1.253	1.579	1.810	-
	, L	- 6) IV	/STOTALA	2	1	CID	N-Term(iTR	75.14	1.45	Used	1.582	1.924	1.876	-
- 	Ē) IV	/STQTALA	2	1	CID	N-Term(iTR	74.81	1.67	Used	1.449	1.373	1.048	-
	Ē	-	-) k0	TALVELLK	2	1	CID	N-Term(iTR	65.95	4.23	Used	0.638	0.996	0.714	-
	Ē	-) r⊢	PEYAVSVLLR	2	1	CID	N-Term(iTR	64.93	4.50	Used	0.976	0.962	0.010	
	Г) fk	DLGEEHFk	1	1	CID	N-Term(iTR	61.49	2.77	Used	0.591	0.819	0.998	
÷	Г) fk	DLGEEHFk	1	1	CID	N-Term(iTR	59.55	2.92	Used	0.708	0.773	1.081	-
	Г) q1	ALVELLK	2	1	CID	N-Term(iTR	55.71	2.93	Used	0.861	0.826	0.826	
	Г) IVI	VELTEFAk	2	1	CID	N-Term(iTR	52.99	2.87	Used	0.650	1.087	1.211	
	Г) hL	VDEPQNLIk	2	1	CID	N-Term(iTR	51.61	3.72	Used	0.832	0.843	0.959	
÷	Г) hF	EYAVSVLLR	2	1	CID	N-Term(iTR	49.44	2.99	No Report				
÷.	Г) q1	ALVELLK	2	1	CID	N-Term(iTR	47.51	2.94	Used	0.898	0.844	0.980	-
														•	
Read	sady 5/5 Protein(s), 178/178 Peptide(s), 988/988 Search Input(s)														

Table 12 describes the features of a peptide row.

Table 12.	Peptide row	(Sheet 1 of 2)
-----------	-------------	----------------

Feature	Description
Sequence	Displays the peptide sequence.
# Proteins	Number of proteins.
# Protein Groups	How many protein groups.
Activation Type	Displays the activation type of the spectrum where the peptide was identified.
Modifications	Displays the static and dynamic modifications identified in the peptide.
Probability	Displays the probability score for the peptide.
Score	Displays the score that the search algorithm calculated for the match.
XCorr	XCorr scores count the number of fragment ions that are common between X and Y and calculate the cross-correlation score for all candidate peptides queried from the database.
Quan Info	(Optional) Marking if quantitative analysis is available
115/114	(Optional) Related to Quan Info
116/114	(Optional) Related to Quan Info
117/114	(Optional) Related to Quan Info
Rank	Displays the rank ordering of the peptide.
Charge	Displays the charge state of the peptide.
MH+(Da)	Displays the weight differential of the peptides in Daltons.
ΔM (ppm)	Displays the difference between the theoretical mass of the peptide and the experimental mass of the precursor ion.
First Scan	Displays the first scan number where the peptide was initially identified.
Last Scan	Displays the last scan number in which this peptide match was identified.
RT (minutes)	Displays the retention time where the peptide was observed.

Feature	Description			
MSOrder	 Indicates the order of the MS spectrum: 1 is a one MS scan 2 is an MS/MS scan (MS₂) 3 is MS₃ The number of stages minus one of precursor ion <i>m/z</i> selection, followed by product ion detection such that MS₂ means one stage of precursor ion <i>m/z</i> selection is then followed by product ion detection 			
mlz	Mass-to-charge ratio			
Intensity	Relative intensity			
Ions Matched	Displays the number of ions found compared to the theoretical number of ions.			
Annotation	Provides a location for you to insert and store notes about the search results, your analysis, and quality results.			
Shortcut Menu	In the header, right-click to access the shortcut menu: Show Top Match Peptides Only Show Peptide Groups Show Filtered Out Rows Enable Protein Grouping Mass Tolerance Unit Row Numbers Style Copy, Ctrl+C Copies the selected rows to the Clipboard. You can then paste the rows in a spreadsheet application such as Microsoft Excel. Copy With Column Headers Export to Excel Workbook. Enable Row Filters Show 'Group By Colump' Panel 			

Table 12.	Peptide	row (Sheet 2 of 2)
-----------	---------	--------------------

As part of the Peptides page, you can view the associated proteins. Click + to the left of the peptide row to access the protein rows. Right-click to access the shortcut menu, and choose **Show Top Match Peptides Only** to display all the peptides.

For a visual explanation of the Peptide page see Figure 23. For descriptions of the protein results, see Table 12 on page 44.

Peptide Confidence Page

Use the Peptide Confidence page to set the confidence levels for database searches (see "False Discovery Rates and Peptide Confidence Indicators" on page 97). In Proteome Discoverer, the filter settings are used to distribute the confidence indicators for the peptide matches (these are the green, yellow, and red dots attached to each peptide match). Whenever a decoy database search is performed during the database search and filter settings have been applied to achieve the specified target FDRs, the same filters are used to distribute the confidence indicators. Peptide matches that pass the filter associated with the strict FDR are assigned a green confidence indicator, peptide matches that pass the filter associated with the relaxed FDR are assigned a yellow confidence indicator, and all other peptide matches receive a red indicator.

Note You can change the default confidence levels to alternative values within the Peptide Confidence page.

Related Topics

- To view the protein grid
- To view the peptide grid
- Peptide Confidence Page

Search Input Page

The Search Input page displays detailed information for the spectra (mass peak lists) that were created and processed during the search process. If you used the grouping parameters during your search wizard, the grouped spectra are listed in this report. You can also check to see how many peptides (# of identified peptides) were found and which proteins the peptide belongs to. From this report, you can also select spectra to create an Xcalibur exclusion/inclusion list.

Table 13. Search Input parameters (Sheet 1 of 2)

Parameters	Description
ID	Naming convention
# Identified Peptides	Displays the total number of peptide matches found during the search. Displayed in table by default.
Precursor MH+ [Da]	Displays the weight differential of the peptides in Daltons.
Precursor Charge	The charge for each peptide.
First Scan	Displays the first scan number where the peptide was initially identified.
Last Scan	Displays the last scan number where this peptide match was identified.
Master Scan(s)	Full scan in which this precursor has been selected.

Parameters	Description
Scan(s)	Displays all scan numbers where this peptide match was identified.
RT (minutes)	Displays the retention time where the peptide was observed.
Activation Type	Displays the activation type of the spectrum where the peptide was identified.
Mass Analyzer	 Displays the mass analyzer used to create the .raw file data. Proteome Discoverer recognizes the following mass analyzers: ITMS (Ion Trap) FTMS (Fourier Transform) TOFMS (Time of Flight) SQMS (Single Quad) TQMS (Triple Quad) SectorMS (Sector Field)

Table 13. Search Input parameters (Sheet 2 of 2)

Filters Page

Use the Filters page to refine your search results and make your analysis quicker. By using filters, you can sort and filter your results by charge state, modifications, or even peptide probability. You can also create and apply more than one filter to your search results.

The protein and peptide filters have two sets of menu choices shown in Figure 24; the Filters page appears (see Figure 25).

Figure 24. Choices for protein and peptide filters

Protein Filters
Differentiable Proteins
Distinct Proteins
Peptides Per Protein
Protein Description Contains
Proteins Containing Sequence Tag

Peptide Filters
Charge State
Has Modifications
Peptide Confidence
Peptide Mass Deviation
Peptide Score
Peptides Containing Any of the Specifi
Peptides Containing Sequence Tag
Precursor Mass
Score versus Charge State

Figure 25. Filters page

	👯 Therm	o Proteon	ne Discove	rer 1.0.4	0											-		X
	File <u>S</u> earch	A Report	Quantitation	Processing	y Workflo ? 2 2 (f x	w <u>E</u> ditor ॓ III ♀	<u>A</u> dmir	istration SEQUES	<u>T</u> ools T 🕀	<u>Wi</u> ndow Mascot	Help V	<mark>% </mark>	4	» •	¢ 6	.	.	
list	Proteins Filter Set Please s	Peptides Handling - elect a filter	Search Inpu	t Filters	Peptide C	onfidence	Sea	arch Sumn	nary	Quantitatio	in Sumr	mary						
	Filter Set	ilters	Save															
Applies filters	Peptide	Filters					_			Tourseland	T-	Anakas	1	T:lb - u				
to search results	Has Mo	difications				>>		Active		Inverted	IS	Applied]	Filter				
loouno	Peptide	Confidence	•		-	<<												
	Protein	Filters —																
	Differe	ntiable Prot	eins		_			Active		Inverted	I	s Applie	ed I	Filter				
	Peptide	: Proteins es Per Prote	in			_ <<												
	- Filter Se	ttings						1										
																	5	
	Ready					5/5 Pro	itein(s),	178/178	Peptide	e s), 988/98	18 Sear	ch Inpu	it(s)	_				
	Fil	ter settir	ngs status		Ac bu	dd and r Ittons	emov	/e	In fo si	vert the for disregation of the second secon	filter arding perty	- good I a	d S c c	Selec option curren	ted filf ns and nt stat	er us		

Note For an inverted filter example, set the peptide confidence level to low confidence and select the inverted option so that only the modest- and high-confidence levels show in the report.

The different columns of the filter table provide specific information about the current status of the filter settings. See Figure 25 and Table 14.

Table 14. Filter options (Sheet 1 of 2)

Option	Description
Active	When the check box is selected, the filter is added to the filter set. You must also use Apply Filter to apply the filter setting to your current results. When the check box is not selected, the filter is temporarily removed from the filter set. By default, a newly added filter is selected and active.

Table 14.	Filter	options	(Sheet)	2 of 2)
-----------	--------	---------	---------	---------

Option	Description
Inverted	When the check box is selected, the filter settings are inverted. All items that would normally be filtered out remain in the search results and all items that would normally remain in the result are hidden and not seen in the search results.
Is Applied	Displays if the filter has already been applied to the current search results. If the status is True, the filter was applied to the current search results.
Filter	Displays the name of the filter.
Filter Setting(s)	Provides a text summary of the status of the filter settings of parameters shown in the right pane. Modify the Filter Settings in the right pane.

Using the Proteome Discoverer Workflow Editor

- Workflow Workspace
- Creating and Saving a Search Workflow
- Discoverer Workflow Nodes Details

You can access the workflow editor options from the Search Report menu. Figure 26 shows details of these options.

The Proteome Discoverer Workflow Editor is a flexible and complex tool to create customized data processing workflows. Instead of using the standard wizards available through the Processing menu, you can develop a workflow specific to your needs. The workflow is the layout of processing nodes, which you then submit to process your data.

You can create a reusable processing workflow template by saving your design to load and use at another time. A unique workflow gives you the ability to set parameters that are normally static settings in the wizard or to use a function that would not normally be available such as Xtract, spectrum export, or cascading searches.

WARNING Prerequisites to using the Proteome Discoverer Workflow Editor are to first learn each "workflow node" functionality. If you do not understand the function (or interconnectivity) of these nodes, you can potentially build a sequence that creates bad results and makes no analytical sense.

Workflow Workspace

The unique three-pane layout of the Proteome Discoverer Workflow Editor provides node selections, a workspace, and parameters for each node. See Figure 27. The nodes are like building blocks that you can use to create a unique search sequence. Using the nodes, you can define your own search parameter tolerances and criteria.

Figure 27. Workflow Editor workspace definitions example

Use the three-pane layout of the Proteome Discoverer Workflow Editor to do the following:

- Customize your workflow.
- Add nodes to your workflow.
- Set and define your search parameters (see Table 10).

To learn the Workflow Editor nodes

- 1. Drag a node to the workspace.
- 2. Click the Workflow Node to activate its functions, displayed in the right pane.
- 3. In the right pane, examine the available options for that node.

Note The same options are available in the wizards.

- 4. Delete the node by selecting the node and pressing DELETE.
- 5. Repeat steps 1 through 4 for each node.

✤ To create a search sequence

- 1. Drag the **Rawfile Selector** node to the workspace.
- 2. Depending on your data needs, drag and drop ideal nodes to the workspace.
- 3. Organize the nodes to reflect a procedural order from top to bottom, so that the Rawfile selector remains on top.

Joining the nodes together creates a step-wise path for Proteome Discoverer to follow as you feed data into the first node, the Rawfile Selector.

4. To join two nodes, click the node so that a blue handle is activated at the bottom-center of the node. See Figure 28.

Figure 28. Activated node example

5. Drag the blue handle down to the top-center of the node below it (see Figure 29).

Figure 29. Joining two nodes

IMPORTANT If the next node appears with a red edge at this point, you cannot connect to the previous node.

- Once all your chosen nodes are joined, align them. Choose Workflow Editor > Auto Layout.
- 7. For each node, do the following:
 - a. Click the node to activate it.
 - b. In the Show Advanced Parameters pane, review each line item for relevancy and accuracy. Choose and alter as fits the raw file base properties.
- 8. To save the workflow, choose Workflow Editor > Save Workflow.

Creating and Saving a Search Workflow

To create a search workflow

- 1. From the Proteome Discoverer toolbar, choose **Workflow Editor > New Workflow**. The Workflow Editor view opens.
- 2. Select and drag a **Data Input** node to the workspace, such as the one shown in Figure 30.

Figure 30. Data Input node Rawfile Selector on Workflow Editor pallette

Workflow Nodes	- P Name: Mulhasic Workflow
😑 Data Input	Hand. Hy basic worknow
Rawfile Selector	Based on Template:
Spectrum Selector	Description:
SRF File Selector	June 26- Sequest search with Dynamic modifications. CID data
Spectrum Processing	New Death of Feed Court Nate
ETD Spectrum Charger	Merge Results or Equal Search Nodes
😡 Noise Peak Filter	
Non-Fragment Filter	101
Spectrum Grouper	Rawfile Selector
· · ·	

- 3. Start creating your new workflow using a node from Data Input.
 - a. From the Data Input category, drag the **Rawfile Selector** or **SRF File Selector** node to the workspace. This is your data input file.
 - b. If you selected the Rawfile Selector node as your input, drag the **Spectrum Selector** to the workspace. Figure 31 shows the Rawfile Selector and Spectrum were selected and added to the workspace.

Note You can set the Spectrum Selector node to select which precursor mass to use for a given MSn scan, such as choosing to pick the precursor from the parent scan.

- 4. (Optional) Drag a node from the Spectrum Processing category to the workspace. You can use one or more nodes from the Spectrum Processing category for your workflow.
 - Use the ETD Spectrum Charger node to calculate precursor ion charge states for ETD spectra, used for all low-mass accuracy ETD data.
 - Use the Xtract node to deconvolve the precursors for all high-mass accuracy data regardless of the fragmentation type.
 - Use the Spectrum Grouper node to apply a grouping function to the data set.
 - Use the Noise Peak Filter node or the Spectrum Normalizer to define specialized filtering early in the search process.
- 5. (Optional) Drag a Spectrum Filters node or nodes to the workspace. See Figure 32.

Use Scan Event Filter for high-mass accuracy data such as Mascot analysis and SEQUEST analysis of mixed fragmentation mode type data (CID and ETD). It can filter on information such as fragmentation type and mass analyzer identity.

6. Drag a Peptide/Protein ID node to the workspace. Figure 32 shows that the ZCore search engine was selected.

Both Mascot and SEQUEST can search ETD and CID data, whereas ZCore can only search ETD data.

Figure 32. Setting your parameters for your workflow

- 7. Select a node in the workspace. The available parameters for the node appear in the Parameters pane.
 - In the Parameters pane, define your parameters and input file. Complete this step for each node you selected.
- 8. Link the nodes to develop a workflow:
 - a. Select the bottom edge of a node in the center.
 - b. Drag your mouse to connect the two nodes. An arrow appears.
- 9. In the Name box, enter a unique identifier for the name of your workflow. This name is also the name of your .msf results file.
- 10. In the Description box, enter a description of your workflow.
- 11. To start your search, select **Workflow Editor > Start Workflow**. The Job Queue pane appears, showing the status of your search.
- 12. Use the Job Queue to check the status of your search. For details, see "Working with the Search Job Queue" on page 60.

Note To view your search results, see Chapter 3, "Interpreting Search Results."

* To save a search workflow

- 1. After completing a new search workflow design, see "To create a search workflow" on page 53.
- 2. Click Save As Template. A dialog box appears.
- 3. Enter a name which describes the workflow contents.

To open a saved workflow

- Choose Workflow > Open From Template. The Open Processing WorkFlow Templates page appears.
- 2. Select a workflow from the list.
- 3. Click **Open**. The Workflow Editor window opens with the selected workflow displayed.

Figure 33. Open WorkFlow page

Open Processing Workflow Templates						
Ŧ	Time Submitted	Name	Description			
Ø	=	A	A			
Þ	06/26/2008 03:19 PM	ETD-ZCore				
	06/16/2008 06:41 PM	quantitation_Sequest	Zcore ETD or ECD data			
	06/16/2008 06:40 PM	quantitation_Mascot	Zcore ETD or ECD data			
	06/16/2008 06:37 PM	quantitation	Zcore ETD or ECD data	-		
			Open Cancel			
Wo	orkflow list		Open button			

Discoverer Workflow Nodes Details

This section describes the six categories of workflow nodes. See "Proteome Discoverer Workflow" on page 19 for short definitions.

Figure 34. Workflow nodes

Workflow Nodes 🛛 🚽 👎					
😑 Data Input					
🔊 Rawfile Selector					
🔊 Spectrum Selecto	r				
sr File Selector					
Spectrum Processing					
😡 ETD Spectrum Ch	arger				
😡 Noise Peak Filter					
😡 Non-Fragment Fil	ter				
Spectrum Groupe	r				
😡 Spectrum Normali	izer				
😡 Xtract					
Spectrum Filters					
🚮 Scan Event Filter					
Spectrum Propert	ies Filter:				
Spectrum Score F	ilter				
😑 Peptide/Protein	ID				
🙀 Mascot					
Request					
🥀 ZCore					
Quantitation					
🙇 Reporter Ions Qu	uantitizer				
😑 Data Export					
Spectrum Exporte	ər				

Data Input

A logical workflow contains a sequence of processing steps. Begin with raw spectra data, and then process the data with operators that you can choose from the workflow node selection pane. You can also set the workflow to export the results into other data formats.

You can begin your search flow with two data input nodes. Use either the Rawfile Selector or the SRF File Selector to specify your data input file.

IMPORTANT You must use Spectrum Selector with the Rawfile Selector.

Spectrum Processing

Once you have selected your input data, you can apply several processing functions to the data. Spectrum Processing provides six nodes to define your search parameters:

- ETD Spectrum Charger
- Noise Peak Filter
- Non-Fragment Filter
- Spectrum Grouper
- Spectrum Normalizer
- Xtract

Spectrum Filters

You can filter input data prior to a database search to remove lower quality spectral peak lists from your analysis. This can decrease search times and false positive identifications. The Spectrum Filter nodes provide three types of spectrum filters to use for your search. Use these pre-analysis filters to streamline your search results.

Peptide ID and Protein ID nodes

The Proteome Discoverer Workflow Editor provides an option to use any of the three search engines with the Peptide/Protein ID nodes: Mascot, SEQUEST, or ZCore.

Quantitation

The Proteome Discoverer Workflow Editor provides an option to quantitate your spectra with the Reporter Ions Quantitizer. For instructions to create a quantitation method, see the procedure, "To apply a quantitization node to a workflow" on page 69.

Data Export

The Proteome Discoverer Workflow Editor provides an option to export your spectra with the Spectrum Exporter node.

Working with Reports

- Checking Your Job Queue Search Status
- Deleting Items from the Queue List

✤ To open or load a report (menu)

- 1. In the Discoverer window, choose **File > Open Report**.
- 2. Find the .msf file to upload and click **OK**. A status page appears as the information is organized to display the report.
- 3. (Optional) If you receive a .raw file query message, find the corresponding .raw file if it is available.
 - a. Click Yes to find the .raw file.

Proteome Discoverer 1.0		
?	The RAW file 'C:\Rawfiles\9mix_LysC_monolith.RAW' associated with this result file counidn't be found. Do you want to browse for the file?	
	Yes No	

b. If it is found, click **Open** to accept the .raw file.

The search results are displayed in the Proteome Discoverer results window.

To open an .srf file

- 1. Choose File > Import Search Results from SRF. A wizard appears.
- 2. Follow the instructions to open the appropriate file.

To save a report

- 1. In the Proteome Discoverer window, click the appropriate report tab to save your modifications.
- 2. Choose File > Save Report. The filter settings are stored in the results file (.msf).

To close a report without saving changes

- 1. In the Proteome Discoverer window, click the report tab you want to close.
- 2. Choose File > Close.

```
-or-
```

Right-click the report you want to close, and choose Close from the shortcut menu

Your changes or filter settings are not automatically saved. You must save your changes to keep them for future use.

✤ To view the protein grid

In an open report, click the **Protein** tab. The protein view of your search report appears.

✤ To view the peptide grid

In an open report, click the **Peptide** tab. The peptide view of your search report appears.

Related Topics

- To open a Job Queue view
- To open the Qual Browser

Working with the Search Job Queue

Use the search queue to check the status of your search or remove search results from the Job Queue list. For detailed job queue information, see page 73.

- Checking Your Job Queue Search Status
- Deleting Items from the Queue List

Checking Your Job Queue Search Status

You can check the status of your search and results, or you can review the result details from the Job Queue view.

- * To check the search results status from the Job Queue list
- 1. Choose Administration > Show Job Queue to open the Job Queue view.

Figure 35. Job queue

2. To expand and view the details of the search, click + to the left of the job.

Deleting Items from the Queue List

You can remove search results from the Job Queue list.

- To delete items from the Job Queue list
- 1. Choose Administration > Show Job Queue to open the Job Queue view.
- 2. Select the box to the left of the row of the job you want to delete. The job is selected.

- 3. Click Remove on the toolbar of the Job Queue view. A Delete Jobs message appears.
- 4. Click **OK**.

The selected job is removed.

Using FASTA Database Utilities

- FASTA Files
- Adding Protein References to FASTA
- Performing a Decoy Database Search

With FASTA Database Utilities you can import your FASTA database files, review the properties of your FASTA file, determine if the database is in a readable format, or modify the way in which the protein titles in the database are parsed. When you select the Tools > FASTA Database Utilities command, Proteome Discoverer displays a view to perform these actions.

The FASTA Files view displays the processed .fasta file properties, such as the file name, file size, and number of proteins stored in the table. For each protein entry, the FASTA file structure is analyzed to determine if the .fasta file meets the requirements for Proteome Discoverer to use in a spectra search. The .fasta file is quickly processed and made available for use.

FASTA Files

This section describes how to add a protein reference to your FASTA database file.

- ✤ To find a protein reference
- 1. Choose Tools > FASTA Database Utilities.
- 2. Click Find Protein Reference. The Find Protein Reference page opens.

Figure 36. Find Protein References page in the FASTA Database Utilities window

💀 FASTA Database Utilities 📃 🗖 🔀	
Add Protein References Compile FASTA Database Find Protein References	
EASTA Database: C:\Xcalibur\database\equine.fasta	
Maximum number of matches reported: 10	
Equals	Boolean search
yei 113322 sp P00818 ACYM_HORSE Acylphosphatase, muscle type isozyme (Acylphosphate phosphohydrolase)□ >ei 114373 sp P18907 A1A1_HORSE_Sodium/potassium-transporting_ATPase_alpha-1_chain_precursor_(Sodium_pu	Drotoin rogulta
3 >gi 118494 sp P15437 DHA1_HORSE Aldehyde dehydrogenase 1A1 (Aldehyde dehydrogenase, cytosolic) (ALDH cl 💽	TIOLEIITTESUILS
U STARPERSUD TEUFGRUQGU CFRHIREDER REIGUUGWUR MISKGTUIGQ UQGPERIUNS HRSWESRUGS PSSREDRIMF	 Sequence table
Start Search Save/Add Selected to Database Stop Search	
Cancel Help	

- 3. To find the .fasta file of interest, click the browse button (...).
- 4. Type the amino acid sequence of interest for a search string.
- 5. Set the Boolean search operators as needed.
- 6. Click Start Search. Results appear if the search parameters match the data.
- 7. (Optional) Select a protein result row. The sequence table below shows the theoretical amino acid results for the selected protein.

Adding Protein References to FASTA

Use the Add Protein References page to locate and modify an existing FASTA file. You can add a protein sequence or reference to a registered FASTA file.

To open the Add Protein References page

- 1. Choose Tools > FASTA Database Utilities.
- 2. Click the Add Protein References tab. The Add Protein Reference page opens.
- 3. Click the browse button (...) to locate your file of interest.
- 4. In the Enter Description box, type the description of the .fasta file.

Figure 37. Add Protein References page in the FASTA Database Utilities window

😸 FASTA Database L	Itilities			
Add Protein References	Compile FASTA Database Find P	rotein References		-
FASTA File: C:\Calib	ur\data\5a-example\mouse_ref.fasta			
Enter Description:				- 12
This is a test with an ar	ifical reference.			^
				~
Enter Protein Sequenc	e:			
ABCDEFGHUKLMNOF	QRSTUVWXYZ			~
			55	
				Add Entry
			Cance	el Help

Performing a Decoy Database Search

The false discovery rate (FDR) or false positive rate is a statistical value that estimates the number of false positive identifications among all identifications found by a peptide ID search. It is a measure of the certainty of the identification.

Although there is more than one way to determine FDRs, the following topics describe how to set and determine false discovery rates using Proteome Discoverer.

You can use FDRs to validate MS/MS searches of large data sets, but they are not effective on searches of a small number of spectra, or searches against a small number of protein sequences, because the number of matches will likely be too small to give a statistically meaningful estimate.

The following procedure describes how to use the search wizards to perform a decoy database search to achieve FDRs.

✤ To set a decoy database search

- 1. Start your search by using the search wizards. See the procedure, "To use the SEQUEST Search Wizard on a raw file" on page 30.
- 2. On the Search parameters page, select the **Search against decoy database** option. See Figure 38.
- 3. Set your target FDR for high and medium confidence.
- 4. Continue to define your remaining search criteria.

Figure 38.	Decoy	Database	Search	parameters
------------	-------	----------	--------	------------

SEQUEST Search Wizard	? 🔀
SEQUEST Search Define the SEQUEST search parameters	
General Search Parameters Database: equine.fasta Enzyme: Trypsin Missed Cleavages: 2 \$ Search Tolerances Minim Use Average Precursor Mass Precursor Mass Tolerance: 10.0 ppm Use Average Fragment Masses Fragment Mass Tolerance: 0.8 Da Ion Series Calculated a lons Factor: 0 b lons Factor: 1 y lons Factor: 1 c lons Factor: 0 z lons Factor: 0	Decoy Database Search ✓ Search Against Decoy Database Target FDR (Strict): 0.01 Target FDR (Relaxed): 0.05 ed target false discovery rate for peptide hits with moderate confidence. um value = 0.0 num value = 1.0
	< Back Next > Cancel

Working with Chemical Modifications

The Chemical Modification view is used to build and maintain the static and dynamic modifications data that is available when you define your search settings.

- * To open the Chemical Modifications view
- 1. Choose Administration > Chemical Modifications. The Chemical Modifications view appears.
- 2. Explore the default types of modifications and their corresponding amino acids.

The modifications table contains the modification's delta mass, amino acids, and substitution. By using the Chemical Modifications view, you can add amino acids to existing modifications and create new modifications.

Figure 39. Chemical Modifications Administration view

🝓 Thermo Discoverer 1.0.29		
Ele Yew Search Report Processing	Workflow Editor Administration Tools Window Help	
Administration		• ×
A	Import Delete Apply	
Process Management 👷	Modification V Delta Mass V Delta Average Mass V Substitution V	Leaving C
Job Queue	* Click here to add a new record	1
	€ Applied Biosystems origin 442.224991 442.5728 H(34) C(20) N(4	
Database Content 👷		-
FASTA Files		
	Dehydration -18.010565 -18.0153 H(-2) 0(-1) ■	
Chemical Modifications	■ Dehydration -18.010565 -18.0153 H(-2) O(-1)	
Cleavage Reagents	Amino Acid Name ▼ One Letter Cod Asparagine N Ghtamine 0	
License Management		
	Click here to add a new record	
Licenses	Modification マ Delta Mass マ Delta Average Mass マ Substitution マ	Leaving 6
	Dehydration -18.010565 -18.0153 H(-2) 0(-1)	
Configuration 🛠	pyridylacetyl 119.037114 119.1207 H(5) C(7) N 0	-
🖃 🌍 Workflow Nodes 💽		•
Ready		

How to Quantify Your Data Using Adminstration and Workflow

- Reporter Ion Based Quantitation in Proteome Discoverer
- Assess the Abundance of the Precursor

Proteome Discoverer includes a protein identification and quantitation package with SEQUEST and Zcore licenses. You can measure and report the relative quantitation of isotopically-labeled peptides.

Reporter Ion Based Quantitation in Proteome Discoverer

This section introduces reporter ion based quantitation (RIQ). Use the quantitation workflow and the data retrieval and storage process to quantify your results.

The following procedure discusses the reporting side, improvements in the calculation and statistics steps, and improvements for display and validation of quantitation results.

You can quantify all isobaric labeled samples. There are defaults available for iTRAQ-4plex and iTRAQ-8plex. You can also add new methods.

✤ To select a quantitation method

- 1. Choose **Administration > Quantitation Methods**. The reporter ion based quantitation methods are available through this option.
- 2. To activate the methods that are available when designing a Proteome Discoverer workflow, select the respective Method Name check box. See Figure 40.

How to Quantify Your Data Using Adminstration and Workflow

Figure 40. Quantitation Methods view

To edit a method

- 1. Choose **Administration > Quantitation Methods**. The reporter ion based quantitation methods are available through this option.
- 2. Click of the a Method Name row. An arrow () appears next to the selected name.

The Edit-button is now active (see Figure 41).

Figure 41. Select method to edit

Condition buttons

Import Delete A	dd Edit	
Method Name	Description 🗠	Is Active
T iTRAQ 4plex	Method for iTRAQ™ 4-plex mass tags by Applied	V
▶ iTRAQ 8plex	Method for iTRAQ™ 8-plex mass tags by Applied	✓

3. Click Edit

- 4. The Processing Method Editor appears.
- 5. Choose each of the following tabs to verify the options are set correctly for your raw data set. See Figure 42.
 - Mass Tags
 - Ration Calculation
 - Protein Quantitation
 - Experimental Bias
 - Ratio Reporting

Figure 42. Quantitation Processing Method Editor tab options

📰 Processing Method Editor 📃 🗖 🔀						
Mass Tags Ratio (Calculation Protein Quantitati	ion Experimental Bias Ratio Reporting				
114 115 116	Tag Name	114				
117	Monoisotopic m/z	114.11123				
	Average m/z	114.17347				
+ -	Reporter Ion Isotopic D -2 -1 0 +1 +2 + -	istribution Name -2 Isotope Shift -2 📚 Isotope Intensity [%] 0.0				
		OK Cancel Help				

***** To apply a quantitization node to a workflow

1. Open a workflow template. See "To create a search workflow" on page 53.

2. Choose Quantitation >Reporter Ions Quantitizer.

- 3. Drag the node to the workspace.
- 4. Connect the Rawfile Selector node to the Reporter Ions Quantitizer node.
- 5. Edit options for each node. See "To learn the Workflow Editor nodes" on page 52.
- 6. Select Workflow Editor > Save as Template.

Quantitation Summary

You can display the quantitation spectrum of a selected sequence with the quantitation summary view.

IMPORTANT To use the quantitation menu options, the raw data file must have been acted on by the Workflow Reporter Ion Quantitizer node. See "Using the Proteome Discoverer Workflow Editor" on page 49.

✤ To show quantitation spectrum

- 1. Click the **Peptide** tab.
- 2. Select a sequence of interest.
- 3. Choose **Quantitation > Show Quantitation Summary**. A Quantitation Spectrum chart appears. See Figure 43.

Figure 43. Quantitation summary with a chromatogram view

A chromatogram view shows the intensities of masses as a function of time.

selected peptide was eluted.

ions.

Assess the Abundance of the Precursor

By using the graphically displayed intensity of the peptide, you are able correct for noise and move the baseline noise.

- The peak start and end points as well as the baseline are in blue.
- The peak area and the height values are automatically calculated.

You can use the view to assess the chromatographic peak shape of the associated precursor, and to reference the elution time of the identified peptide. The integrated area under the curve and height of the peak is displayed and can be used to assess the abundance of the precursor.

To magnify a peak

Drag your mouse over the region of interest.

Figure 44. Extracted ion chromatograph

Using Qual Browser

Qual Browser automatically displays the elemental composition, theoretical mass, RDB, and delta values for your high-resolution data.

- ✤ To open the Qual Browser
- 1. Choose Tools > Open Qual Browser to open the Spectrum window.
- 2. Right-click and choose **Display Options** from the shortcut menu.
- 3. To automatically annotate your peaks, click the **Composition** tab and select the labels for display.

Job Queue

After you set up and start the search project, you can view a list of searches and their states in the Job Queue view. The Job Queue displays the search name, the .raw file name, the date the search was submitted, and the progress of the search and its status.

Using the Job Queue

The following procedure describes how to use the job queue options.

✤ To open a Job Queue view

Choose Administration > Job Queue.

From the Job Queue view, you can do the following:

- Refresh the job queue status.
- Check the status of a job.
- Pause or resume a job.
- Remove or cancel a job.
- Open a report in the Server Job Queue. See "Open a Completed Report From Job Queue" on page 74.

Figure 45. Job queue diagram of controls and status

		Jo	b queue contr	ols				Job queu	e status
Thermo Proteome Discoverer 1.0	.38								
e Search Report Quantitation Process	sing Workfle	w Editor	Administration	Tools Win	dow Help				
					OLIEST CA Mascot CA 7Con		N 1. 55 0 1 0 1		
Administration X		1850 • 1		• 1 68	forme (Me united (Me con-	• • : •	IN ALL OF A LONG	• • • •	94. 100 AP +
					Ma	80.		_	
Process Management	*	Serve	r Job Queue:	MP Abort	Kenove Cresh	Cope	n Report		
Loo Queue		Г (Execution State	Progress	Name		Spectrum Source	Descriptio	Submitte
Job Queue		8-	Completed	100 %	NPQ-9-Prot-CID-2-10-07-run58	_bovine	C:\Documents and Settings		6/13/2008
Database Content Management	*		Processing Node			М	essage		
FASTA Files			(2):SEQUEST	(2) Pro	cessing completed				
			(2):SEQUEST	Purger	11 protein(s) scored and insert	ed into DE	8 in 0.45 seconds		
Chemical Modifications		-	(2):SEQUEST	(2):SEQUEST ScoreCalculator: 11 protein(s) scored					
			(2):SEQUEST	(2):SEQUEST Purger: Started.					
Cleavage Reagents	E	-	(2):SEQUEST	Sendin	g 532 peptide hits (0 peptides) ti	o Databas	seConnector		
Currentitation Matheads			(2):SEQUEST	Reusin	g existing FASTA index.				
Quantitation methods		-	(2):SEQUEST	Looking	for existing FASTA index.				
		-	(2):SEQUEST	Reusin	g existing FASTA index.				
License Management	*		(2):SEQUEST	Looking	for existing FASTA index.				
Licenses		H	(2):SEQUEST	Receivi	ng spectra 6001 to 6533.				
			(1):Spectrum Se	I Sendin	g 531 spectra to SpectrumDistrib	utor			
Configuration			(1):Spectrum Se	I Sendin	g 531 spectra to DatabaseConne	ector			
	×	H	(2):SEQUEST	Sendin	g 1000 peptide hits (31 peptides)) to Datab	baseConnector		
- Mascot		(2):SEQUEST	(2):SEQUEST Reusing EASTA index.						
- 🧿 SEQUEST			(2):SEQUEST	Looking	for existing FASTA index.				
- SRF Importer			(2):SEQUEST Reusing EASTA index.						
- 🥨 ZCore			(2):SEQUEST	(2):SEQUEST Looking for existing FASTA index.					
		1.1-	(2):SEOUEST	Receivi	no spectra 5001 to 6001.	_			
eady									

Open a Completed Report From Job Queue

The following procedure describes how to open a report you recently worked on from the Server Job Queue.

- 1. Choose Administration > Show Job Queue.
- 2. Click the Completed row in which you are interested.
- 3. Click 💕 Open Report 🗸 . The Open dialog box appears (see Figure 46).
- 4. In the Open dialog box, select the file of interest. The example in Figure 46 uses **062608_reserpine07**.
- 5. Click **Open Report**. The .msf file appears in a new tab view.

Note The Job Queue view is still available by choosing the Job Queue tab name.

🕷 Thermo Proteome Discoverer 1.0							
Eile Search Report Quantitation Processing Workflow Editor Administration Tools Window Help Image: Search Report Image							
Process Management 😭	An Pause 🎲 Resume	🎲 Abort	💥 Remove 🛛 🍣 Refresh 🚺	😂 Open Report 🗸			
Job Queue	Execution State	Progress	Name	Spectrum Source 🗠 D)ε		
Database Content M 💡	Completed Processing	100 % Node	062608_reserpine07	C:\Xcalibur\examples\data\reserpi Message			
License Management 💡	(2):SEQUEST		Processing completed Purger: 0 protein(s) scored an	d inserted into DB in 0.22 seconds			
Configuration 🛛 😵	(2):SEQUEST		ScoreCalculator: 0 protein(s) s	cored			
	(2):SEQUEST		Purger: Started.	l I			
	(2):SEQUEST		Sending 806 peptide hits (0 pe	ptides) to result file			
	(2):SEQUEST		Reusing existing FASTA index.	I			
	(2):SEQUEST		Looking for existing FASTA ind Reusing existing FASTA index.	ex.			
' Ready	0/0 Protei	n(s), 0/0 Pep	tide(s), 806/806 Search Input(s)				

.msf file contents

Related Topics

- To open or load a report (menu)
- To save a report
- To close a report without saving changes.

InforSense

InforSense Protein Annotation is part of the Proteome Discoverer tool set, which automatically retrieves descriptive information, allowing identified proteins to be placed in their biological context. You can use Proteome Discoverer InforSense as another way to look at your search results.

* To open InforSense

- 1. Open an .msf file.
- 2. Choose Tools >InforSense. A dialog box appears.
- 3. Select the criteria for your annotation project run.
- 4. Click Invoke InforSense. The InforSense VM Console appears.

5. In the Workflow pane, click **Workflow**. The Workflow begins running (see Figure 47).

The bottom frame shows a completeness graph.

Figure 47. InforSense running outside of Proteome Discoverer

InforSense VM Console					
File Help					
Workflow Selection Workflows GO Annotation NCBI GO Annotation SwissProt Matching Table NCDI	Description: GO Annotation	SwissProt			
Metadata Table NCBI	Introduction The purpose of this workflow is to describe a list of proteins in terms of their associated biological processes, cellular components and molecular functions. The methodology is derived from the Gene Ontology, but uses a higher level abstraction, and does not attempt to capture the more fine-grained definitions in the Gene Ontology. This enables				
- Workflow Task List					
✔ Workflow	Status	Date/Time	Progress		
GO Annotation NCBI	RUNNING	6/17/2008 11:21:49 AM	58%		

IMPORTANT InforSense Protein Annotation comes with InforSense Workflow documentation available through the Help menu.

Interpreting Search Results

After Proteome Discoverer completes your search, it creates an .msf file. The .msf file contains data and results from your search. Open this .msf file so that you can access and interpret the search results. You can also display multiple search results within a single report.

The single or multiple results report displays a list of matching peptides and proteins identified by the search engine you specify. From your results report you can do the following:

- Sort and filter your data.
- Match likely proteins to your analyzed data.
- Access isotope, chromatogram, and other graphical views.
- Export your results, report, and views.
- Create reports to export into another file format for peptides and proteins identification or graphical display.

Contents

- Working with the Initial Results Report
- Working with Filters
- False Discovery Rates
- Working with the Proteins Grid
- Working with the Peptides Grid
- Working with the Search Input
- Interpreting the Isotope Pattern View
- Interpreting the Spectrum View
- Interpreting the Extracted Ion Chromatogram
- Interpreting the Fragment Match View
- Exporting Data to Other Programs
- Working with InforSense Discussion

Working with the Initial Results Report

The results report is the main report that is initially displayed when you upload the search results (.msf file). From this report, click a protein or peptide row to navigate to other tabular and graphical views. The views provide detailed graphical information on your selected peptides. You can display more than one view to do a comparative analysis of your selected peptide or proteins. Use the shortcut menus to alter the details in your report or to copy information. To customize your report, you can move the columns to a different location in the report. You can also do a quick sort of your columns by clicking the column header.

Initial results report procedures:

- Organizing Rows and Columns
- Saving and Applying Results Report Layout Changes

Organizing Rows and Columns

In the initial results report, you can customize your table using these features:

- Grouping peptides in the protein or peptide tables
- Sorting columns by preference
- · Adding row index numbering to help you sort

Adding, Removing, and Grouping Columns

In the results report, you can group together peptide identifications with the same underlying sequence under the same collapsible heading. The individual identifications within the group might differ in detected modifications, activation type, and particular search engine result. Use this feature when viewing results from multiple searches in a single report. Entries within the peptide group should still display non-redundant (no duplicate) references.

Note If the Show Only Top Match Peptides option is active, Proteome Discoverer shows only the best matched peptides.

* To group by columns

- 1. In the Peptide or Protein table, right-click to display the shortcut menu (see Figure 48).
- 2. Choose **Show Peptides Group**. The table displays the peptides in a summary-type view, showing only the best matched peptides.

Figure 48. Shortcut menu

	Show Top Match Peptides Only					
~	Show Peptide Groups					
	Show Filtered Out Rows					
	Enable Protein Grouping					
	Mass Tolerance Unit 🔹 🕨					
	Row Numbers					
	Copy Ctrl+C					
	Copy With Column Headers					
	Export to Excel Workbook					
	Enable Row Filters					
	Show 'Group By Column' Panel					

Sorting Columns

You can sort a column by ascending or descending order. The small triangle to the right of the column header shows if the column is in ascending or descending order.

To sort a column

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Click the column header that you want to sort, as shown in Figure 49. You can also sort on multiple columns by holding down the CTRL key while clicking other column headers.

The information in the column is sorted in descending order.

Figure 49. Column header sorting example

🚮 Thermo	Prote	eome Discovere	er 1.0						
File Search Report Quantitation Processing Workflow Editor Administration Icc s Window Help									
🔰 🐉		👿 💿 📀 🖬	10 LLa LLa	¥ 🗶 🗉 🖬	»	🍖 SEQUEST	🙀 Mascot 🛛 💐 👫 👫 👆 💙 🍭 🐻 🜉 🏶 🌉 ຌ		
run_iTRA	Q_BSA_	3ITMS2_3HCD-02	.msf	x NPQ-9-Pro	t-ETD-2	-10-07-run 5	i8-equestdecoy.msf x		
Proteins	Pentide	s Search Input	Filters	 Pentide Confidence	Sear	sh Summaru			
	T epide	Accession #	Coverag	e # Pentides	#0.04	Score V	Description		
		di2506462	48.37 %		153	29.24	MYOGLOBIN		
+ 2		gi115660	16.96 %	6 11	224	26.67	BETA CASEIN PRECURSOR		
+ 3		gi418694	24.88 %	6 42	607	24.97	serum albumin precursor - bovine [MASS=69270]		
+·· 4	Γ	gi1942750	36.60 %	6 6	153	24.42	Myoglobin (Horse Heart) Mutant With Ser 92 Replaced By Asp (59		
	Г	gi129293	25.65 %	6 20	386	23.39	OVALBUMIN (PLAKALBUMIN) (ALLERGEN GAL D 2) (GAL D II)		
		gi2554649	56.86 %	6 14	153	22.72	Myoglobin (Horse Heart) Mutant With Leu 104 Replaced By Asn (L		
	Г	gi543794	12.69 %	6 17	607	21.05	SERUM ALBUMIN PRECURSOR		
	Г	gi999881	46.41 %	6 12	153	20.91	Myoglobin Mutant With His 64 Replaced By Thr (H64t)		
±. 9		gi126608	<mark>42.</mark> 18 %	6 10	147	20.84	LYSOZYME C PRECURSOR (1,4-BETA-N-ACETYLMURAMIDASE C) (
		gi2146983	44.90 %	٥	98	20.65	cytochrome c - horse (fragments) [MASS=10934]		
÷. 11		gi2190337	35 .58 %	6 79	607	20.58	(X58989) serum albumin [Bos taurus]		
. . 12		gi164857	17.24 %	۰	232	20.53	(M98395) carbonic anhydrase II [Oryctolagus cuniculus]		
÷ 13		gi809143	60.00 %	6 14	105	19.51	Cytochrome C		
÷ 14		gi914117	39.42 %	6 11	104	19.38	apocytochrome c [horses, heart, Peptide, 104 aa] [MASS=11826]		
		gi1127120	44.44 %	6 9	144	18.90	Lysozyme, Fibrinogen Mol_id: 1; Molecule: Lysozyme Modified Wit		
⊕ 16		gi117995	54.81 %	6 17	104	18.85			
•									
Beady				1000/1	000 Prot	ein(s), 21055/2	21055 Peptide(s), 4686/4686 Search Input(s)		
	eady Tobor T								

Column header sorted

3. Click the column header again to sort the information in ascending order.

Labeling and Identifying Rows

To add or remove row index numbers

- 1. Right-click the Peptides or Proteins table to display the shortcut menu.
- 2. Choose Row Numbers. A list of options is displayed.

Row number index

9	T	ermo	Prot	eome Disc	ove	rer 1.0						<
Eil	е	<u>5</u> earch	Repor	t <u>Q</u> uantitat	tion	Processing W	orkflow <u>E</u> ditor	<u>A</u> dminis	tratio	n <u>T</u> ools	: <u>Wi</u> ndow <u>H</u> elp	
	ø	» Ŧ	ō,	👿 💿 🤇	0	🔟 🛄 💐	2 4 🗉 🖬)	🍖 si	EQUEST	🕀 Mascot 🛛 💐 👫 👫 🐥 💐 🎑 🖷	»
	NF	Q-9-P	rot-E1	D-2-10-07	'-run	58-equestdeco	oy.msf X	Administr	ratior	n x	062608_reserpine07.msf 🗙 🔻 🖣	Þ
Ĩ	Prol	eins 🗎	Peptid	es Search	Inpu	t Filters Pep	tide Confidence	e Searc	ch Su	immary		
		i L		Accession	n#	Coverage	# Peptides	#AAs	s	core ∇	Description	1
	, r	1		gi2506462		48.37 %	. 9	153		29.24	MYOGLOBIN	1
	-	2		gi115660		16 06 0/		224		26.67	BETA CASEIN PRECURSOR	
		3		gi418694		Show Top Match	Peptides Only	•		24.97	serum albumin precursor - bovine [MASS=69270]	
	.	4		gi194275		Show Peptide Gro	oups			24.42	Myoglobin (Horse Heart) Mutant With Ser 92 Replaced By Asp (59	
	•]··	5		gi129293		Show Filtered Ou	lt Rows			23.39	OVALBUMIN (PLAKALBUMIN) (ALLERGEN GAL D 2) (GAL D II)	
	•]··	6		gi255464	~	Enable Protein Gr	rouping			22.72	Myoglobin (Horse Heart) Mutant With Leu 104 Replaced By Asn (L	
	•]··	7		gi543794		Mass Tolerance L	Jnit	•		21.05	SERUM ALBUMIN PRECURSOR	
	•	8		gi999881		Row Numbers		+		None		
	••	9		gi126608		Copy	Chil	+ C	~	Number	Only Visible Items	
	•••	10		gi214698		Copy Copy With Colum	e Usedava	τC		Number	All Items (Including Currently Hidden Ones)	
	Þ	11		gi219033		Copy with Colum				Use Inv	variant Result Index	
	<u>-</u>	12		gi104057		Export to Excel v	VORKDOUK		-	19.51	Cytochrome C	
	- 	13		gi009143		Enable Row Filter	′S		-	19.31	apocytochrome c [horses_beart_Pentide_104_aa][MASS=11826]	
		15		gi)112712		Show 'Group By (Column' Panel		-	18.90	Lysozyme, Eibringgen Mol. id: 1: Malecule: Lysozyme Modified Wit	
	- -	16		gi117995		54.81 %	17	104	_	18.85	CYTOCHROME C	
				-			1				•	J
		_	_		_			_	_	_		1
Re	ady						1000/	1000 Prot	ein(s)	, 21055/2	21055 Peptide(s), 4686/4686 Search Input(s)	

- 3. Select the row number style you want to use. Proteome Discoverer applies the row number option instantly.
- 4. (Optional) You can set the options as follows:
 - Number Only Visible Items—Numbers only visible rows from 1 to *N*.
 - Number All Items: (Including Currently Hidden Ones)—Numbers all rows from 1 to *N*.
 - Use Invariant Result Index—Numbers all rows by using an internal ID. (This option is the only numbering tag that remains on after sorting or filtering operations.)

Saving and Applying Results Report Layout Changes

Use the Layout menu to save layout changes, create a layout, and apply a layout to your results report. After you have used the Column Chooser options, you can save your changes to a default layout or a special layout for your results report.

* To define Column Chooser options

- 1. In the Protein or Peptide view, in the left corner, click 🛃. The Column Chooser appears.
- 2. Click the columns you want to view on the results page.

To save a results report layout

- 1. Activate the modified results report with your preferred layout. See "Adding, Removing, and Grouping Columns" on page 78 and "Sorting Columns" on page 79.
- 2. Ensure the report rows are in the correct layout. See "Labeling and Identifying Rows" on page 81.
- From the Proteome Discoverer menu, choose Search Report > Layout > Save Layout As to save the column and row changes. See Figure 50.

Figure 50. Save Layout As menu options

5	earch Report	Quantitation Pro	ocessing	Workflow <u>E</u> ditor	<u>A</u> dministral	tion <u>I</u>	ools <u>Wi</u> ndo	w <u>H</u> elp	
	Show <u>D</u> eta	ails			Ctrl+D		SEQUEST	줝 Mascot	줝 ZCore 🖕
	Show Dist	ri <u>b</u> ution Chart		Ctrl+	Shift+D				
2	Show Pep	tide Consensus View	/			,			
6	Show prot	eins covered by this	set of pep	otides Ctrl+	Shift+H	harge	First Scan	Last Scan	Master Scan
	Show Chro	omatogram View		Ctrl+	Shift+C	2	2331	2331	
	Show Spe	ctrum		Ctrl+	Shift+S	2	2244	2244	
	Show Frag	ment Match Spectro	um	Ctrl+	Shift+F	2	4218	4218	
	Show <u>I</u> sot	ope Pattern		Ctrl+	-Shift+I	2	5671	5671	
	Show Extr	· acted Ion Chromato	ogram	Ctrl+	Shift+T	2	5504	5504	
	- Show Sea	uence Comparison	-			2	3807	3807	
-	Export Xe	alibur Exclusion List				2	5584	5584	
	Export Sp	albur Exclusion cisc. actra				2	108	108	
		voort				2	188	188	
		xport				2	374	374	
	Layout				•		Apply Layout		Ctrl+L
]	4141		3	601.30791			Apply Default	: Layout	
	13250		1	601.32512			Save Layout		
1	4081		2	601.33470			Save Layout	As Ctr	l+Shift+L
1	2931		1	601.47142			Save Layout	as Default	

Open					? 🗙
Look in:	😂 Layouts		💌 O 🦻	• 🗉 🕈	
My Recent Documents	TestLayout1.	diyt diyt			
My Documents					
My Computer					
	File name:			-	Open
My Network	Files of type:	Discoverer Layout Files (*.d	yt)	× [Cancel

Figure 51. Saving a layout

- 4. In the File name list, select or type the name of the layout.
- 5. Click **OK** to save the layout with the specified File name. The view closes and your layout properties are stored in a file in the layout folder.

To create a default layout

- 1. Activate the modified results report with your preferred layout. See "Adding, Removing, and Grouping Columns" on page 78 and "Sorting Columns" on page 79.
- From the Proteome Discoverer menu, choose Search Report > Layout > Save Layout As Default to save the column and row changes.

You can now apply the row and column properties to any results report. To apply the default layout to any report, use the Apply Default Layout command.

To apply the default layout to your report

- 1. Click the results report that you want to modify.
- 2. From the Proteome Discoverer menu, choose Search Report > Layout > Apply Default Layout.

The properties of the default layout are applied to the results report.

To apply a layout to your report

- 1. Click the results report that you want to modify.
- 2. From the Proteome Discoverer menu, choose **Search Report > Layout > Apply Layout**. An Open dialog box appears as shown in Figure 52.

3. Select the layout you want to apply. The selected layout name appears in the File name box (see Figure 52).

Open ? > C Layouts 🖌 🕝 🧊 📂 🖽 • Look in TestLayout1.dlyt TestLayout2.dlyt My Recent Documents Desktop My Documents Au Compute File name Open Files of type Discoverer Layout Files (".dlyt) Cance Mu Network

Figure 52. Selecting a layout to apply

4. Click **Open** to apply the layout to your report. The properties of the selected layout are applied to the results report.

Working with Filters

Proteome Discoverer offers powerful capabilities for filtering your search results data by applying the available results filters on the Filters page. It also offers a quick method to filter your tabular search results. The quick filtering is called Row Filters and is accessed from the shortcut menu. These two different methods for filtering data, the results filters and the row filters, provide complementary options.

The filters are defined as follows:

- Results filters—Available on the Filters tab, these filters exclude peptides and proteins from the result set. As an effect, applying these results filters to filter out peptides changes the number of identified peptides and the percentage coverage values of the proteins. The numbers of filtered versus total number of peptides and proteins displayed in the status bar are also affected.
- Row filters—Display filters only. When displaying the filtered out rows, the affected lines for both filters are seen as grayed out rows. Excluding peptides by setting row filters does not change the number of identified peptides and the percentage coverage values of the proteins.

Use the filters feature to selectively hide and sort the visible results of the matched search results. Use the Filter page to separate the proteins and peptides based on the parameters selected from the Filters list. Use the Row Filters option with the Filters page feature to narrow your search results even further.

To filter and sort your results, you can apply any of these features:

- Apply a quick filter (see "Filtering Results" on page 85).
- Sort columns to organize the table (see "Filtering Results" on page 85).
- Add or remove filters (see "False Discovery Rates" on page 93).
- Activate more than one filter (see "False Discovery Rates" on page 93).
- Display the filtered row to do a visual check of the sorted results (see "Filtering Results" on page 85).

Filtering Results

The following procedures describe how to filter your results using two filtering methods. If you save your report, you can save filters that you set using the Filters page with your results report. You cannot, however, save the filters you set using the Row Filters features with your results report. The Row Filters feature only works on the visible table.

To filter your search results using the Filters page

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Click the tab of the search results you want to filter.
- 3. Click the Filters tab. The Filters page appears.
- 4. Select a filter type from either Filters list.
- 5. Click . The filter is included in the filter table. A message: Filters Changed! appears when a filter has been made active. (see Figure 53).
- 6. Select the check box to the left of the filter in the Active column.
- 7. (Optional) Select the check box to the left of the filter in the Inverted column.

Note For an inverted filter example you set the peptide confidence level to low confidence and select the inverted option so that only the modest and high confidence levels show in the report.

Figure 53. Filters view

💀 Thermo Proteome Discoverer 1.0	
<u>File S</u> earch Report Quantitation Processing Workflow <u>E</u> ditor <u>A</u> dministration <u>T</u> ools <u>Wi</u> ndow <u>H</u> elp	
🚺 💱 😨 🔤 🚳 🔤 💷 🐑 🎎 🗉 🗔 🦹 🦗 SEQUEST 🖗 Mascot 🛛 🔋 🖁 👫 👫 💥 🖤 🍭 🐻 🐺 🦻	🔍 👻
NPQ-9-Prot-ETD-2-10-07-run58-equestdecoy.msf* × Administration × 062608_reserpine07.msf ×	₹ 4 ▷
Proteins Peptides Search Input Filters Peptide Confidence Search Summary	
Filter Set Handling	
Default Load Delete	
Filter Set Apply Filters Save Filters Changed!	
Charge State	
Has Modifications	
Peptide Confidence	
Protein Filters	
Distinct Proteins	
Peptides Per Protein	
Filter Settings Peptide Confidence-Value Peptide Confidence Unknown	
Ready 1000/1000 Protein(s), 21055/21055 Peptide(s), 4686/4686 Search Input(s)	

8. To update the results table, in the Filter Set area, click **Apply Filters**.

The Is Applied column changes status from False to True as an indicator that the filter is applied to the active .msf file.

Note For an inverted filter example you set the peptide confidence level to low confidence and select the inverted option so that only the modest and high confidence levels show in the report.

Related Topics

- Removing and Deactivating Filters
- Quick Filtered Items

Removing and Deactivating Filters

Use the Filters page to set filter changes to the number of proteins and peptides visible in the Results grid. Add, remove, activate, or deactivate filters so that you can remove unneccessary information as you sort through the search results.

To remove a filter

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Click the appropriate tab for your search results.
- 3. Click the Filters tab. The Filters page appears.
- 4. Click the filter on the filter table to highlight the row.
- 5. Click . The filter is removed from the filter table. A message: Filters Changed! appears.
- 6. To update the results table, click Apply Filters.

To deactivate a filter

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Click the appropriate tab for your search results.
- 3. Click the Filters tab. The Filters page appears.
- 4. Clear the check box to the left of the filter in the Active column.
- 5. To update the results table and disable the filter, click **Apply Filter**. The filter, however, is not removed from the Filters page.

Related Topics

- Filtering Results
- Quick Filtered Items

* To set a quick filter to your search results using row filters

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Select the Proteins or Peptides page. This example shows the Peptides page.
- 3. Right-click the table results to access the shortcut menu. Choose **Enable Row Filters**. Small funnel icons appear to the right of the column headers as seen in Figure 54.

Figure 54.	Funnel filter menu
------------	--------------------

Image: Search Report Quantitation Processing Workflor Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor Image: Search Report Processing Workflor Image: Search Report Quantitation Processing Workflor Image: Search Report Processing Workflor Image: Search Report Quantitation Processing Workflor Image: Search Report Processing Workflor Image: Search Report Quantitation Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor	Ì
Image: Search Report Quantitation Processing Workflor Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor Editor Administration Tools Window Help Image: Search Report Protectory Pro	
Eile Search Report Quantitation Processing Workflor r Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor r Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor r Editor Administration Tools Window Help Image: Search Report Quantitation Processing Workflor r Editor Administration Tools Window Help Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Processing Workflor Image: Search Report Procestender Ima	
Image: Sequest decoy.ms Image: Sequest decoy.ms <td>•</td>	•
NPO-9-Prot-ETD-2-10-07-run 58-equest decoy.m: f* × Administration × 062608 reserpine07.msf ×	
Proteins Peptides Search Input Filters Peptide C nfidence Search Summary	
🚰 V V Sequence V # Proteins V # Protein Groups V Activation Type V Modifications V MH+[D_i] V Expectation V	
HGTWVLTALGGILK 1 1 ETD (All) 251.2	
FQsEEQQQTEDELQDK 1 1 ETD S3(Phos) (Blanks) 110.8	
RPcFSALTPDETYVPK 1 1 ETD C3(Carba) (NonBlanks) 39.7	
Image:	
E SQAVHAAHAEINEAGR 1 1 ETD 1774.78415 191.8	
E VEADIAGHGQEVLIR 1 1 ETD 1608.78220 185.6	
E VEADLAGHGQEVLIR 1 0 ETD 1608.78220 185.6	
FQsEEQQQTEDELQDK 1 1 ETD S3(Phos) 2062.81015 72.4	
EccHGDLLECADDR 1 1 ETD C2(Carba) C3(C 1750.84348 168.6	
E F HPGDFGADAQGAMTK 1 1 ETD 1503.22171 113.2	
E FESNENTQATNR 1 1 ETD 1429.20096 167.2	
EETLMEYLENPKK 1 1 ETD 1624.59134 111.8	
E KVPQVSTPTLVEVSR 1 1 ETD 1643.56931 163.9	
🕒 🔽 🕥 SLHTLFGDELcK 1 1 ETD C11(Carba) 1420.58411 115.3	
E VAAELHLVHWNTK 1 1 ETD 1584.00661 163.6	
ECCHGDLLECADDR 1 1 ETD C2(Carba) C3(C 1748.92051 117.5	
E GGLEPINFQTAADQAR 1 1 ETD 1688.99741 103.4	
E TEREDLIAYLK 1 1 ETD 1352.43656 84.2	
EETLMEYLENPKK 1 1 ETD 1625.84378 118.0	
Ready 1000/1000 Protein(s), 21055/21055 Peptide(s), 4686/4686 Search Input(s)	.:

4. Click a funnel icon. A menu list opens for you to set a row filter for that particular column. In this example, choose **Custom**. The dialog box to enter filter criteria for a particular view appears (see Figure 55).

Note The following steps provide specific details on how to set a precursor mass filter.

Figure 55. Enter filter criteria for MH+ [Da] example

🖁 Enter filter criteria	for MH+ [Da]			Đ
	Operator		Operand	
And conditions	Greater than or equal to	~	1100	~
Or conditions	≤ Less than or equal to	~	1300	~
Add a condition				
Add a condition				
Delete Condition				
ОК				
Cancel				

- 5. From the Operator list, select Greater than or equal to.
- 6. In the Operand box, type **1100**.
- 7. To display another row in the Enter filter criteria dialog box, click Add a condition.
- 8. From the next Operator list, select Less than or equal to.
- 9. In the Operand box, type **1300**. The Enter filter criteria dialog box should look like Figure 55.
- 10. Click **OK** to accept the filter settings. For this example, only peptides that have a precursor MH+ mass between 1100 and 1300 are displayed.

Where this type of filter is active, the color of the column funnel icon is blue as shown in Figure 56.

Figure 56. Blue-colored funnel icon indicating an active column

					Blue	e funnel icon	
🕷 Thermo Proteome Discoverer 1.0)						
File Search Report Quantitation Proces	sing Workflow <u>E</u> ditor	<u>A</u> dministration	<u>T</u> ools <u>W</u> indow <u>H</u>	<u>t</u> elp			
🚺 🗳 🔜 🔤 🚳 🛄	🛄 🎽 🖄 🗉 💷	😤 🙀 SEC	QUEST 🙀 Mascot	÷ 1 ∦ 4	⊾ ≫ ¥ 🤞	644	l »
NPQ-9-Prot-ETD-2-10-07-run58-equ	iestdecoy.msf* 🗙	Administration	× 062608_re	serpine07.msf	x	Ŧ	4 ⊳
Proteins Peptides Search Input Filte	rs Peptide Confidence	Search Sum	mary				
🛃 🛛 🗸 Sequence 🗸	# Proteins 🛛 # Prot	ein Groups 🛛 🏹	Activation Type 🛛 🌱	Modifications 🛛 🏹	MH+ [Da] 🔻	Expectation ∇	
HPEYAVSVLLR	1	1	ETD		1284.73459	87.49	
HPEYAVSVLLR	1	1	ETD		1284.67151	76.51	
FKDLGEEHFK	1	1	ETD		1250.89688	76.84	
	1	1	ETD		1274.00946	16.75	
TGPNLHGLFGR	1	1	ETD		1168.93631	60.76	
TGPNLHGLFGR	1	1	ETD		1168.99875	49.34	
FKDLGEEHFK	1	1	ETD		1250.94339	50.12	
	1	1	ETD		1272.78321	1.00	
	1	0	ETD		1272.78321	1.00	
	1	1	ETD		1272.78321	1.00	
	1	1	ETD		1251.32155	20.69	
	1	1	ETD		1272.78321	1.00	
	1	0	ETD		1272.78321	1.00	
	1	0	ETD		1272.78321	1.00	
	1	1	ETD		1272.78321	1.00	-
•						•	
Ready	1000/1	000 Protein(s), 2	21055/21055 Peptide	(s), 4686/4686 Sear	ch Input(s)		

✤ To remove a quick filter

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Select the Proteins or Peptides page with the quick filter set.
- 3. Click the blue funnel icon. A menu list opens for you to set a row filter for that particular column. In this example, choose **Custom**. The dialog box to enter filter criteria for a particular view appears.
- 4. In the Operand row of interest, click the condition button to the left of the Operator list. The condition is activated (see Figure 57).

	Operator		0	perand
And conditions	\leq Less than or equal to	×	1300	
Or conditions	Greater than	~	1000	*
Add a condition				
Delete Condition				
ОК				
Control				
Lancel				

Condition button

- 5. Click **Delete Condition**.
- 6. Click OK.

Quick Filtered Items

Quick filters hide rows in the tabular reports so that you can easily assess your results. By using the Show Filtered Out Rows command in the shortcut menu, you can see the hidden rows to do a comparative analysis. The hidden rows are grayed out when you choose Show Filtered Out Rows.

To display quick filtered rows

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Select the Proteins or Peptides page. This example shows the Peptides page.
- 3. Click the Peptides tab. The Peptides page appears.
- 4. Right-click to display the shortcut menu as shown in Figure 58, and choose **Show Filtered Out Rows**. The grid changes to show filtered and unfiltered rows.

Figure 58. Showing quick filtered out rows

R 1	Ther	mo l	Prote	ome Discoverer	1.0														×
<u>Fi</u> le	<u>S</u> ea	rch F	leport	Quantitation Pr	ocessir	ng V	Vorkflo	v <u>E</u> ditor	<u>A</u> dministratio	on <u>T</u> oo	ls <u>Wi</u>	indow j	<u>H</u> elp						
6		»		2 💿 📀 🗖	ا سلیا) »	K 🗉	💷 🔋 😡	SEQUE	EST 🧯	🍖 Masc	ot 🎽 🖁	1 8	「赤澤(2 💰 👼	4	l 🔍	»
	PO-9)-Pr	ot-ETI	D-2-10-07-run58	-eque	stder	cov.m	f* x	Administratio	on 3	x Of	52608 re	eserpine07.msf	>	2			₹ 4	⊳
			tida											-	-				
Pr	oteins	: F	epilde	s Search Input	Filters	Pe	ptide Ci	onfidence	Search Su	Immary									
	P	- Y	Y	Sequence	Y	# Pro	teins	r # Pro	tein Groups S	Z Activ	ation T	ype V	Modifications	Y	MH+[Da]	Expectat	:io V V	Proba	
+			0								EID				973,9652	24	27.70		
+	_	_	A		۶Ľ					1	EID				2198.7793	33	27.00		
+		_	A	IFKDEDTQAMPFR		_	Sh	w Top M	latch Peptides	Only	+	L		_	1556.3744	18	25.20		
			D	DQNPHSSNIcNIScD	к		Sh	w Peptic	le Groups				C11(Carba) C1	5	2006.0016	8	25.11		
÷.			N N	IDQDPHSSNIcNIScDI	К		/ Sh	w Filtere	ed Out Rows				C11(Carba) C1	5	2006.0016	8	25.11		
÷.			H				En.	ble Prote	ein Grouning						1306.9717	74 	23.34		
E.			L	KPDPNTLcDEFK					cin drodping				C9(Carba)		1578.3403	37	20.81		
÷۳			9 F	KDLGEEHFK			Ma	ss Tolera	nce Unit		•				1251.3215	55	20.69		
÷.			O	LGEEHFK			Ro	v Numbe	rs		•					74	19.94		
÷.			O	LGEEHFK						Chrl+C							18.36		
÷.			O	LGEEHFK			20	γ 		Curre					975.6684	19	17.51		
÷.			O D	LGEEHFK			0	by with C	Lolumn Header	S					975.8917	79	17,28		
÷.			L	FTGHPETLEK			Ex	ort to E>	cel Workbook						1274.0094	16	16.75		
÷.			R	PcFSALTPDETYVPK		~	En En	ble Row	Filters				C3(Carba)		1881.8001	.4	14.05		
÷.			O	LGEEHFK			Sh	w 'Group	o By Column' Pa	anel					975.8510		13,52		
÷.			M	1VNNGHSFNVEYDD3	5		-				- 110				2100.1250)3	13.22	•	-
┛																		•	
Read	dy							1000/	1000 Protein(s)	, 21055,	/21055	i Peptide	(s), 4686/4686 S	Search	n Input(s)				

Related Topics

- Filtering Results
- Removing and Deactivating Filters

False Discovery Rates

The false discovery rate (or false positive rate) is a statistical value that estimates the number of false positive identifications among all identifications found by a peptide ID search. It is a measure of the certainty of the identification. This topic describes how to determine false discovery rates with Proteome Discoverer by using the decoy search feature.

A good decoy database should contain entries that look like real proteins, but do not contain genuine peptide sequences. The simplest approach to achieving such a decoy database is to reverse all protein sequences, which is the scheme currently used in Proteome Discoverer. It is a suitable approach for enzymatic MS/MS searches.

CAUTION Reversing the database is not suitable for peptide mass fingerprinting, or no-enzyme MS/MS searches. This is especially true with dynamic modifications, because it is possible to get mass shifts at each end of a peptide sequence that transform a genuine y series match into a false b series match or vice versa.

There are two ways to perform the decoy database search:

- (more conservative approach) Perform two separate searches, one against the non-decoy database and one against the decoy database. Then count the number of matches from both searches to determine the false discovery rates.
- Create a concatenated database from the non-decoy and the decoy database and then perform the search against this concatenated database.

The difference between the two approaches becomes clear when thinking of a case where two significant matches are found for a given spectrum. The first match is from the non-decoy database and the second one from the decoy database. As only the top matches are considered when calculating the false discovery rates, this is not considered as a false positive in the concatenated database approach, whereas it would count in the separate databases approach. This is why the latter case is considered the more conservative one, and this is the approach that is currently used in Proteome Discoverer.

How to Calculate False Discovery Rates

To calculate the false discovery rate, the matches are counted that pass a given set of filter thresholds from the decoy database and from the non-decoy database. Proteome Discoverer counts only the top match per spectrum, assuming that for any given spectrum only one peptide can be the correct hit.

What are Target False Discovery Rates (FDRs)?

If a false discovery rate target value is set for a decoy database search, Proteome Discoverer determines and applies filter thresholds to identified matches, such that the resulting false discovery rate is not higher than the set target value. The confidence indicators applied to each peptide match are distributed according to these calculated filter thresholds (see "False Discovery Rates and Peptide Confidence Indicators" on page 97).

You must specify two target values for a decoy database search: a strict target FDR and a more relaxed FDR. Figure 59 shows the decoy search setting with target false discovery rates of one percent and five percent, respectively. After completing the search, the system automatically determines two sets of filter settings so that the resulting separate FDRs do not exceed their corresponding target value.

Setting up a decoy

Determining False Discovery Rates

With Proteome Discoverer, you can determine the false discovery rate for every available search engine. If the search is set up through a search wizard, there is a single check box on the search parameter page (Figure 60) to enable automatic decoy database searching.

Figure 60. Enabling automatic decoy database searching through the search wizard

	database search
EST Search Wizard	
QUEST Search e the SEQUEST search parameters	
General Search Parameters	Decoy Database Search
Database: uniprot.fasta 💌	Search Against Decoy Database
Enzyme: Trypsin 💌 Full 💌	Target FDR (Strict): 0.01
Missed Cleavages: 2 😂	Target FDR (Relaxed): 0.05
Use Average Fragment Masses	
Ion Series Calculated	
a lons Factor: 0 x lons Factor: 0	
b lons Factor: 1 y lons Factor: 1	
b lons Factor: 1 y lons Factor: 1 c lons Factor: 0 z lons Factor: 0	
b Ions Factor: 1 y Ions Factor: 1 c Ions Factor: 0 z Ions Factor: 0	

When setting up the search with the Workflow Editor, you can find the options to do an automatic decoy database search in the search nodes under the Decoy Database Search pane (Figure 59).

After Proteome Discoverer completes the search and opens a result file (.msf), you can find the decoy database search result on the Peptide Confidence page (Figure 61). This page shows the two false discovery rates (relaxed and strict) with their corresponding filter settings listed above them.

Use the Peptide Confidence page to do the following:

- Set new filters and recalculate new false discovery rates based on these new filter criteria.
- Set new target false discovery rates and then recalculate new filter settings that, when applied, lead to false discovery rates not worse than the specified ones.

✤ To recalulate the false discovery rates

- 1. Open a results page and click the **Peptide Confidence** tab.
- 2. Change the filter Target setting.
- 3. Recalculate the false discovery rates, and click Apply Filters.
- 4. Apply the new filter settings, and click Apply FDRs.

Note You can change the default confidence levels to alternative values from the Peptide Confidence page.

Figure 61. Peptide Confidence view with the actual relaxed and strict false discovery rates given the current filter settings

Filter target setting
False Discovery Rates and Peptide Confidence Indicators

In Proteome Discoverer, the filter settings that determine false discovery rates are used to distribute the confidence indicators for the peptide matches: the green, yellow, and red dots attached to each peptide match (see Figure 62). Whenever a decoy database search is performed and filter settings are applied to achieve the specified target FDRs, the same filters are used to distribute the confidence indicators. Peptide matches that pass the filter associated with the strict FDR are assigned a green indicator of high confidence, peptide matches that pass the filter associated with the relaxed FDR are assigned a yellow indicator of modest confidence, and all other peptide matches receive a red indicator of low confidence.

🚮 TI	Thermo Discoverer 1.0.30																×	
Ele	⊻ie	w	Sea	arch R	eport Pr	ocessing Wo	rkflow Edito	r <u>A</u> dmi	nistra	ation	<u>I</u> ools <u>Y</u>	⊻ind	ow <u>H</u> elp					
1 😢	L.	۱.	18		3 📀 6			. 9	-	-	- 8	8	品酒课。	. 🖉 🖻 🖪	- 🕷 🕱 🗸			
1	EQ	ues	t wo	rkflow	.msf	ProteMix_S	equest_De	coy.ms	f	Mult	tiCons.: 2 Jo	bs	Workflow	w Editor			-	×
Sea	rch	Su	mma	ry	Proteins	Peptides Se	earch Input	Filters	Pe	ptide	Confidence	1						
B	9		,	Acces	sion #	Coverage	# Peptie	ies ;	FAAs		Score	V	S.		Description	1		-
	1		P02	769		13 %	1	8	6	07	19	.24	ALBU_BOVIN	Serum albumin (precursor - Bos ta	aurus (Bovir	e)	
	1		P01	012		9%		4	3	86	14	.37	OVAL_CHICK	(Ovalbumin (Pla	kalbumin) (Allerg	en Gal d 2)	(Gal d II)	
17	É	尹			S	equence	Mod	lification	s	Pr	robability		SpScore	XCorr	∆ Score	Rank	Charge	
	-		Г	•	AFKDEDTQ	AMPER					12.66	1	1148.29	3.23	0.00	1	2	
	-]			•	DEDTQAMP	FR					4.36		527.02	2.10	0.00	1	2	
	-1			• I	TEWTSSN	VMEER					15.78		1644.09	3.92	0.00	1	2	
	-]		Г	• /	ADHPFLFcI	к	C8(Ca	rbo)			9.59		365.04	1.66	0.00	1	2	
B	9		1	Acces	sion #	Coverage	# Peptic	des a	#AAs		Score	V			Description			
•	1		P00	698		29 %		4	1.	47	9	.07	LYSC_CHICK	Lysozyme C pre	cursor - Gallus ga	allus (Chicke	n)	
•	1		Q28	3554		10 %		2	3	22	8	8.00 G3P_SHEEP Glyceraldehyde-3-phosphate dehydrogenase - Ovis arie					1	
•	F P14639 8 %			4	6	07	7	.94	ALBU_SHEEP Serum albumin precursor - Ovis aries (Sheep)									
•	1		P68	083		32 %		4	15	54	7.93 MYG_EQUBU[Myoglobin - Equus burchelli (Plains zebra) (Equus qua					quus quago		
•	1		P00	004		24 %		2	10	05	7	.17	CYC_HORSE	Cytochrome c -	Equus caballus (H	lorse)		
•	1		Q28	CIES		8%		2	3	95	6	.39	G3PT_BOVIN	Glyceraldehyde	-3-phosphate de	hydrogenas	e, testis-sp	ŧ I
	1		P02	169		21 %		3	1	54	5	.95	MYG_LEPMU	Myoglobin - Lepi	lemur mustelinus	(Weasel les	nur)	
•	1		073	3819		10 %		3	35	54	5	.37	GNA14_XENL	A Guanine nucle	otide-binding pro	otein alpha-	14 subunit	
•	1		P48	812		8%		2	3	39	4	.98	G3P_BRUMA	Glyceraldehyde-	-3-phosphate del	hydrogenas	e - Brugia	
•	1		P04	249		34 %		4	15	54	4	.92	MYG_PROGU	Myoglobin - Pro	echimys guairae	(Casiragua)		
•	1		P57	313		4 %		1	4	40	4	.90	MURD_BUCA	I UDP-N-acetylm	uramoylalanine	D-glutamat	e ligase - I	t
	•		P00	711		13 %		2	1.	42	4	.71	LALBA_BOVI	N Alpha-lactalbu	min precursor - B	os taurus (E	lovine)	
•	1		P33	048		9%		1	2	22	4	.20	CASB_CAPHI	[Beta-casein pre	ecursor - Capra h	ircus (Goat)		
•	1		Q01	1982		8%		2	3.	37	3	.70	G3P_PHACH	Glyceraldehyde-	3-phosphate def	iydrogenasi	a - Phanero	2
•			P00	922		3%		1	20	60	3	.15	CAH2_SHEEP	Carbonic anhyo	drase 2 - Ovis ari	es (Sheep)		-
•		_	_	_													•	
Ready	,							139/	139 P	Protei	in(s), 811/2	219	Peptide(s), 50	4/504 Search In	put(s)			

Working with the Proteins Grid

Use the Proteins grid tab to display the list of identified proteins with the associated identified peptides. From this page you can examine the search results in terms of protein identification, as well as access more details about the peptide identifications and corresponding information from the search input.

You can combine the Chromatogram view with other views such as the extracted ion chromatogram (XIC). The following are examples of accessible views:

- Protein identification details view (protein sequence coverage map)
- Fragment match chart
- Peptide ID details view (sub-level view on the protein page)
- Chromatogram view
- XIC view (reconstructed ion chromatogram of precursor)
- Isotope view (full mass spectrum of precursor m/z)

For further discussion regarding the protein grid page, see the following:

- Researching Groups of Proteins
- Interpreting Your Results with the Chromatogram View
- Interpreting Your Results with the Protein Identification Details View

Researching Groups of Proteins

Although MS/MS-based proteomics studies are peptide-centric, you can also explore what proteins are present and their associations through related peptides. Deducing protein identities from a set of identified peptides becomes difficult due to sequence redundancy, such as the presence of proteins that have shared peptides. These redundant proteins are automatically grouped and are not initially displayed in the results report.

In the search results report, you can turn on or off protein grouping. However, protein grouping is an essential feature for the quantitation to help determine peptide uniqueness. By default, the Show Only Top Match Peptides option is set to off, so you can see all peptides considered for calculating protein ratios.

The proteins that are not distinct or differentiable are not displayed. The proteins within a group are ranked according to their protein score. If they have the same score, they are ranked by their sequence coverage. The top protein of a group becomes the master protein of that group. By default, only the master proteins are displayed on the main Proteins page.

* To display other proteins belonging to the same protein group

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. On the Proteins page, click anywhere in a protein row.
- 3. From the Proteome Discoverer toolbar, choose Search Report > Show proteins covered by this set of peptides.

Another Proteins table appears below the Proteins page.

Figure 63. Grouping of proteins

🐏 Thern	no Discoverer 1.	0.25											
Ele Yew	Search Report	processing <u>A</u> dm	inistration <u>T</u> oo	ls <u>Wi</u> nd	w <u>H</u> elp								
💕 🛄	. 🗔 🖂 🛞		🖸 🖬 🗸	Q. Q. 1	🦓 - 🗟 🛛	14 4 A	12 -						
EQue	st workflow.msf	9ProtMix Ma	scot Decoy.m	sf							- 3	×	
Search S	ummary Proteins	Peptides Sea	ech Input Filte	rs Pepl	ide Confidence								
32	Accession #	Coverage	# Peptides	#AAs	Score	7		Descriptio	on				 Proteins page
э- Г	P02769ALBU	13 %	8	607	375.4	3 Serum albu	min precursor - B	los taurus (Bovi	ne)				(main)
е Г	P01012/0VAL	9%	4	386	6 261.6	5 Ovalbumin	- Galus galus (C	hicken)					(mani)
в- Г	P00698LYSC	29 %	4	147	198.8	8 Lysozyme	C precursor - Gal	lus gallus (Chick	en)				
⊕ □ □	Q28259G3P_C_	13 %	3	333	3 179.3	0 Glyceraldel	vde-3-phosphate	dehydrogenase	e - Canis fa	miliaris (Dog	3)		
8 🕨 🗖	P68083MYG_E_	27 %	3	154	177.8	2 Myoglobin	 Equus burchelli 	(Plains zebra) (i	Equus quag	ga)			 Protein of
2	S	equence	Modificati	ons	IonScore V	Exp Value	Identity High	∆ Score	Bank	Charge	MH+[Da]		interest
	VEADIAGH	HGQEVLIR			85	4.6E-006	51	0.00	2	2	1607.6270		
	LFTGHPE	TLEK.			58	2.3E-003	51	0.00	1	2	1272.3284		1
	F 9 HPGDFGA	DAQGAMTK			35	4.6E-001	51	0.06	2	2	1503.4766		
(F	Accession #	Coverage	# Peptides	#AAs	Score	7		Descripti	on				
* <u> </u>	P46406G3P_R_	16 %	3	333	3 152.5	0 Glyceraldel	vde-3-phosphate	dehydrogenase	 Oryctola; 	gus cunicul	us (Rabbit)		
€- <u> </u>	Q2KJE5IG3PT	11 %	3	395	5 147.7	1 Glycerald	ehyde-3-phospha	te dehydrogena	se, testis-sp	ecific · Bos	taurus (B.,		
• □	P00004(CYC_H_	24 %	2	105	5 143.3	0 Cytochrom	e c · Equus cabal	lus (Horse)				1	
Ľ						_					<u>'</u>		 Related
Other prote	ins covered by the s	ame or smaller s	et of peptides								- ÷ >	×	peptide
四	Accession #	Coverage	# Peptides	#AAs	Score	V		Descript	ion				
B 🕨 🗖	P68083MYG_E_	27 %	3	15	4 177.0	82 Myoglobin	Equus burchel	i (Plains zebra) ((Equus quag	3ga]			
8-	P02191MYG_C_	7%	1	15	4 58.2	26 Myoglobin	Cervus elaphus	(Red deer)					
四		Sequence	Modificat	ions	IonScore V	Exp Value	Identity High	∆ Score	Rank	Charge	MH+[Da]		
	E S LFTGHPE	TLEK.			58	2.3E-003	51	0.00	1	1 2	1272.32842		1
62	Accession #	Coverage	# Peptides	#AAs	Score	V		Descript	ion				
B	P02186MYG_E_	7%	1	15	4 58.2	26 Myoglobin	- Elephas maxim	us (Indian eleph	vant)				Protoins nado
⊕ □ □	P02187MYG_L_	7%	1	15	4 58.2	26 Myoglobin	 Loxodonta afric 	ana (African ele	phant)				
<u>ع</u> - ا	P02190MYG_S	7%	1	15	4 58.2	26 Myoglobin	 Ovis aries (Shee 	np)					(subset)
4)	×	
Ready			61	7/617 Pr	xein(s), 3499/36	41 Peptidels)	504/504 Search	Input(s)					
						2.000(-)						1000	

* To switch off protein grouping

- 1. In a protein grid cell or row, right-click to access the shortcut menu.
- 2. Clear the check mark for **Enable Protein Grouping**. See Figure 64. Your proteins immediately ungroup.

Figure 64. Protein grid shortcut menu options

Interpreting Your Results with the Chromatogram View

You can display the base peak chromatogram of the original .raw data file with the Chromatogram view. A review of the chromatogram can provide information on the specific peptides and peak shapes as well as the intensity of analytes.

* To display the Chromatogram view and peptide elution

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. From the Proteome Discoverer toolbar, choose **Search Report > Show Chromatogram View**. The Chromatogram view appears.
- 3. Select a row on the Proteins page. One or more red lines appear in the chromatogram. The red lines indicate the elution time of all identified peptides of the associated protein. See Figure 65.

A yellow range can appear in the chromatogram view. This is the selected retention time range from which spectra are extracted and submitted for peptide identification.

✤ To interpret your results with the Chromatogram view

- 1. In the Chromatogram view, select one or more proteins, or one or more peptides.
- 2. Observe the red line on the yellow level of the grid. The red line indicates the elution time of each instance of this peptide.
- 3. Check to see if the amount and the profile are as expected.
 - Where is the peptide eluting in the chromatogram? Is it as expected?
 - Is the shape of the chromatogram as expected?

Figure 65. Example of a chromatogram view of proteins

✤ To display the results of Chromatogram and Extracted Ion Chromatogram views

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. From the Proteome Discoverer menu bar, choose **Search Report > Show Chromatogram View**. The Chromatogram view appears.
- 3. Click + to the right of the protein row. The peptides associated with the proteins appear.
- 4. Click a row header in the peptides row. A red line in the chromatogram appears. The red lines indicate the elution time of all identified peptides.
- From the Proteome Discoverer window, choose Search Report > Show Extracted Ion Chromatogram. The Extracted Ion Chromatogram view corresponding to the *m/z* precursor of the selected peptide appears.

* To interpret your results with Chromatogram and Extracted Ion Chromatogram views

Select the row header of the peptide results.

- A red line on the Chromatogram view shows the elution position of this particular peptide.
- The view also displays the elution profile of this peptide in the Extracted Ion Chromatogram view.

Figure 66. Chromatogram view and Extracted Ion Chromatogram view of proteins

Interpreting Your Results with the Protein Identification Details View

To display Protein Identification Details

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Select a row header on the Proteins page.
- 3. From the Proteome Discoverer menu bar, choose **Search Report > Show Details**. The Protein Identification Details view appears. You can also access the Protein Identification page by highlighting a column and selecting Show Details.

Figure 67. Example of Protein Identification Details view

The protein sequence coverage bar is colored to indicate the confidence of the peptide sequence identification. The peptides not highlighted were either not detected or not identified.

- Green—Peptides highlighted are of high confidence.
- Yellow—Peptides highlighted are of modest confidence.
- Red—Peptides highlighted are of low confidence.
- 4. In the protein sequence coverage bar, click a colored bar. The related sequence is highlighted in the same color.

Report Item Distribution Chart

The Report Item Distribution chart provides flexibility to mix and match your search results. You can use the Report Item Distribution to assess different aspects of the search results including scores, delta masses, retention times, and so on by plotting them in relationship to each other. Using the chart, you can plot each property of the identified peptides against each other for comparative analysis.

The Report Item Distribution chart initially plots the score versus delta mass of the identified peptides. To display the extended tooltip information, hover your cursor over a spot in the chart that represents a peptide (as shown in Figure 68). The tooltip information describes the identified peptide, amino acid sequence, charge state, referenced proteins, and so on.

The default display shows the properties of all peptides currently visible. To display the filtered out peptides in the plot, select the **Show Filtered Out** check box at the bottom of the dialog box. The filtered out peptides are plotted as small red crosses (Figure 68 and Figure 69).

Figure 68. Report Item Distribution chart with hover text

Figure 69. Report Item Distribution chart with filtered out peptides

The Report Item Distribution chart is interactive, and supports multi-level zooming and panning. Use the zoom options to look at the pattern in greater detail.

✤ To zoom in

Drag your cursor to the left and select the area you want to enlarge in size.

To zoom out

Drag your cursor to the right and select the area you want to reduce in size.

To use the right-click shortcut menu

Right-click anywhere in the Report Item Distribution chart. The shortcut menu appears.

Working with the Peptides Grid

Use the Peptides grid to accomplish most of your tabular and graphical analyses. From the Peptides grid, you can explore the tabular information of peptides. You can also access the various details views for the peptide matches. Select a row header on the first level (with red background) and select any toolbar icon to access a view such as Details or Spectrum.

On the Peptide page (if the Show Top Match Peptides Only option is active) a non-redundant list of all identified peptides is displayed. All displayed peptides are above the threshold set in any applied filters. Peptides below the threshold can be displayed in a grayed-out form if the Show Filtered Out Rows option is selected from the shortcut menu.

Note With quantitation reports the peptide non-redundant list is disabled.

To start a data validation from the Peptides grid, click the **Peptides** tab above the Results grid. Again, the same two levels of detail associated with a particular peptide sequence are available in the Results grid.

Interpreting Your Results with the Search Reports Views

To view the spectrum

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Select a peptide row.
- 3. Choose Search Report > Show Spectrum. The Peptide Spectrum view appears.

To view the fragment match spectrum

- 1. In an open report, click the **Peptide** tab. The peptide view of your search report appears.
- 2. Select a peptide row.
- 3. Choose Search Report > Show Fragment Match Spectrum. The Peptide Fragment Match view appears.

* To view the isotope pattern of the selected precursor

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Select a peptide row.
- 3. Choose Search Report > Show Isotope Pattern. The Isotope Pattern view appears.

To view i the extracted ion chromatogram

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Select a peptide row.
- 3. Choose **Search Report > Show Extacted Ion Chromatogram**. The Extacted Ion Chromatogram view appears.

To view the peptide consensus page

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Drag the cursor across boxes for identical peptides.

3. Click . The peptide consensus view appears.

In this view you can see the following:

- Spectra detail as a text header
- Horizontal bars showing mass difference that confirms the presence of residues
- Grid cell color indicating positive identification within tolerance and hue-indicated ion series
- Fragment ion coverage showing which ion type confirms fragmentation
- Theoretical values for ions formed by indicated bond breakage
- 4. (Optional) Drag your cursor over spectra region to zoom in. Right-click to reset to initial view.

To view the peptide consensus page

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Select a peptide row.
- 3. Choose Search Report > Show Peptide Consensus View. The Peptide Consensus View appears. See Figure 70.

Figure 70. Peptide Consensus View

Peptide Identification Details

Use the Peptides identification details page to show the analysed spectra of the selected peptide sequence in the peptide grid. You can refer to the following section on fragment ions while choosing your peptide identification details.

Fragment lons

Fragment ions of peptides are produced by a collision-induced dissociation (CID) process in which a peptide ion is fragmented in a collision cell. Low energy CID spectra are generated by MS/MS and ESI, and are sequence specific. The fragment ion spectra contain peaks of the fragment ions formed by cleavage of the N-CR bond and are used to determine amino acid sequence. A fragment must have at least one charge for it to be detected.

The fragment ions produced are identified according to where they are fragmented in the peptide. Fragment ions A, B, and C have a charge on the N-terminal side and fragment ions X, Y, and Z have a charge on the C-terminal side. Fragment ions A*, B*, and Y* are ions that have lost ammonia (-17 Da) and fragment ions A°, B°, and C° are ions that have lost water (-18 Da). The subscript next to the letter indicates the number of residues in the fragment ion.¹

Table 15 summarizes the fragment ions used in Proteome Discoverer:

lons	Description
А	Charge on N-terminal side
В	Charge on N-terminal side
С	Charge on N-terminal side
Y	Charge on C-terminal side
Ζ	Charge on C-terminal side
B*	B ion that has lost ammonia (-17 Da)
Y*	Y ion that has lost ammonia (-17 Da)
B ^o	B ion that has lost water (-18 Da)
Yo	Y ion that has lost water (-18 Da)

Table 15.Fragment ions

¹For more information on fragment ions and nomenclature, see *Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides*; Roepstorff, P. and Fohlman, J.; Biomed Mass Spectrum, 11(11) 601 (1984).

* To view the peptide identification details page

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Select a peptide row and double-click a grid cell. The Peptide Identification Details page appears. See Figure 71 and Figure 72 for details.

Charge [Detail Level:	All -	 Charge state choices
		All	
#1	b(1+)	+1	
1	301.21046	+2	
2	438 26937	+3	

* To view the peptide grid, sequence view

- 1. In an open report, click the **Peptides** tab. The peptide view of your search report appears.
- 2. Select a peptide row.
- 3. In the peptide row, click +. Sequences matching that peptide appear in a grid under the peptide. See Figure 71.

When drilling down into a peptide match, Proteome Discoverer lists all identified proteins that this particular peptide is contained in. When drilling down further into an identified protein, Proteome Discoverer lists all other peptides identified for this particular protein.

If enabled in the Column Chooser of the Proteins grid, the second layer of the Peptides grid (that is, the identified proteins that this peptide is contained in) is also available in the Proteins grid as the third layer.

Figure 73. Peptide grid, sequence view

	👯 Thermo Prot	teome Discoverer	1.0.39													
	Eile Search Repo	rt Quantitation Pro	cessing	Workf ?	low <u>E</u> di Z	tor <u>A</u>	udministratio 🎗 🛛 🙀 SE	on <u>T</u> oo EQUEST	ls <u>W</u> ind 줝 Mas	low <u>H</u> elp scot	° 8 8	8 0 (a)	* 🧟	64	- 🧈 📓	, »
	Administration	× NPQ-9-Prot	-CID-2-1	10-07-	run58	-masc	otdecoy.	msf X								-
	Proteins Peptic	des Search Input F	ilters F	Peptide	Confide	ence	Search Si	ummary								
	团	Sequence		# Prot	teins	# Prot	ein Groups	Activa	ation Type	e Moo	lifications	IonSc	ore V	Exp Va	alue	
		VPTPNVSVVDLTcR			2			1	CID	C13(C	arba)		108	3.5	E-009	
Peptide	KVPQVSTPTLVEVSR					2		1 (CID				2 1.4E-00		
row details		VPTPNVSVVDLTcR			2			1	CID	C13(C	arba)		81	1.6	E-006	
		Accession # V	Covera	ge	# Pept	ides	#AAs	Sco	re	aluanualda			Descri	ption	1 2 1 12	
		GI03991	11,11	/0	# D	5	JJJJ M Duchsie	C	160.23	giyceraide	nyae-o-phosp	phate de	nyarogen	iase (EC	Fre Us	
				* FIG		2	# Protein	Groups 1	Activat	сто	C13(Carba)	NOUS	1011500	108	5 CXP Va	
						2		1			ID C13(Carba)		81		1.6	Ē
1	GAAQNIIPASTGAAK					2		1	(,		22	1.4E	
Matching						2		1	(19	2.6E	
sequence						2		1	(CID				11	1.5E	
	Sequence Sequence		# Prot	teins	# Prot	ein Groups	Activa	ation Type	e Moo	lifications	IonSc	tore 🗸	Exp Va	alue		
	🗄 🗖 🖸	ISQAVHAAHAEINEAG	R		1		:	1	CID				76		4.9E-006	
	Image: Second				2		1		CID				63 5		E-004	
					5		1		CID				58	3.4	3.4E-004	
		LTEWTSSNVMEER			1			1	CID				56	4.9	9E-004	
		FESNENTQATNR			3			1	CID				53	9.9	E-004	
		ELAAVSVDcSEYPKPD	:TAE		1			1	CID	C9(Ca	rba) C17(53	6.0)E-004	
		ECCHGDLLECADDR	,		3		-	2	CID	C2(Ca	rba) C3(C		53	1.0	JE-003	
			· ·		3			1		53(PD	osp)		52	1.0	E-003	
			`		3			1		55(PI	osp)		50	1.2	E-003	-
	•	- And a state of the state of t						•					50	1.0	•	
	Ready				82	1/821	Protein(s), '	10579/10	1579 Pep	tide(s), 655	57/6557 Sea	rch Inpu	t(s)			

Working with the Search Input

Use the Search Input tab to display the grid for all individual peptide results.

- Interpreting the Isotope Pattern View
- Interpreting the Spectrum View
- Interpreting the Extracted Ion Chromatogram
- Interpreting the Fragment Match View

Interpreting the Isotope Pattern View

The Isotope Pattern view displays the isotope pattern of the precursor associated with the identified peptide (Figure 74). The components of this view are as follows:

- The yellow region displays the isolation width of the instrument.
- A red line indicates the monoisotopic precursor mass-to-charge value determined by the instrument during acquisition. This is the isolation mass, which is displayed in the header of the isotope pattern view.
- A blue line marks the calculated monoisotopic precursor mass and represents the re-evaluated monoisotopic *m/z* value for the detected peptide.

This view can also be used to assess the abundance and intensity of the precursor or to reference the experimentally determined mass of the precursor and its isotopes, the isolation window, or other details.

* To display the Isotope Pattern view

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- From the Proteome Discoverer menu bar, choose Search Report > Show Isotope Pattern. The mass spectrum appears.
- 3. Select a row header on the Peptides page. A blue line and yellow bar in the Isotope Pattern appear. A red line can also appear if the monoisotopic mass was redetermined post-acquisition.

Thermo Scientific

4. Use the Isotope Pattern to check if the correct monoisotopic mass has been calculated, since the first isotope of a peptide is not always the most intense ion.

Interpreting the Spectrum View

The Spectrum view displays the graphical spectrum of the submitted peak list used for the search. This spectrum view might differ from the original spectrum in the .raw file if spectral preprocessing (such as noise filter or special grouping) was applied to tandem mass spectra prior to searching associated with each peptide. Use this view to check the quality of the spectrum.

To display a Spectrum view

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- From the Proteome Discoverer menu bar, choose Search Report > Show Spectrum. The Spectrum view appears.
- 3. Select a row header on the Peptides page. The spectrum of the individual peptide appears.
- 4. Use the Spectrum view to check the peptide.

Interpreting the Extracted Ion Chromatogram

This view displays the extracted ion chromatogram of the precursor mass associated with each peptide. The extracted ion chromatogram is a plot of the intensity of an ion versus unit of time. The red line shows when the MS2 spectrum was taken.

* To display the Extracted Ion Chromatogram

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- From the Proteome Discoverer menu bar, choose Search Report > Show Extracted Ion Chromatogram. The extracted mass chromatogram view appears. See Figure 75.
- 3. Select a row on the Peptides page.
- 4. Note the graphically displayed intensity of the peptide:
 - The peak start and end points as well as the baseline are in blue.
 - The peak area or the height value is automatically calculated.

You can use the view to assess the chromatographic peak shape of the associated precursor, and to reference the elution time of the identified peptide. The integrated area under the curve and height of the peak is displayed and can be used to assess the abundance of the precursor.

- 5. Use the graph to determine answers to such questions as
 - Is the MS2 spectrum of poor signal-to-noise due to low abundance of the peptide?
 - Was the MS2 triggered too early (at the start of the peak) or too late (at the end of the peak)?

6. To magnify a particular peak, drag your cursor over the region of interest.

Figure 75. Extracted ion chromagraph

Interpreting the Fragment Match View

The Fragment Match view displays the annotated spectrum of the identified peptide. The matched fragments are colored according to their fragment type, such as blue for b-ions and red for y-ions.

✤ To display the Fragment Match view

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- From the Proteome Discoverer menu bar, choose Search Report > Show Fragment Match Spectrum. The Fragment Match Spectrum view appears. See Figure 76. Select a row header on the Peptides page.
- 3. Confirm that all major fragments are assigned and colored coded.
- 4. Assess the quality of the match between the submitted spectrum peak list and the identified peptide.

Figure 76. Fragment mass view

Major fragments

Exporting Data to Other Programs

Proteome Discoverer offers extensive options for exporting data and results into other file formats, such as .xml. You can do the following:

- Export in common, open standard formats.
- Export spectral information in .mgf, mzData, .dta file formats.
- Export analysis results as ProtXML and as Excel files for detailed analysis of your search results.
- Export all grid data by copying and pasting into Excel files.
- Export all charts to the Clipboard to save in various image formats.

You can create a Peptide Report when the peptide information appears in the initial results report table. You can include the following types of information in the Peptide Report:

- The information displayed in the report table, including the peptides identified, XCorr, probability, and other scores.
- Peptide match information, which includes the sequences and scoring information for all the peptide matches identified for each scan.

Copying or Saving a View to an Image

This section describes how to copy your analysis results and save your results to another application.

To copy a view

- 1. Open a view such as a Chromatogram view.
- 2. Right-click and choose **Copy** from the shortcut menu. The view is automatically stored as an image to the Clipboard. You can paste the image into another application.

To save a view in another format

- 1. Open a view, such as a Chromatogram view.
- 2. Right-click and choose Save as from the shortcut menu.
- 3. Select the image type: .emf, .png, .gif, .jpeg, .tiff, or .bmp.
- 4. (Optional) Select the location to store the image.
- 5. In the File name box, type the name of the file.
- 6. Click Save. The image is saved in the format and location you selected.

Exporting Exclusion and Inclusion Mass Lists to Xcalibur

With Proteome Discoverer, you can export exclusion or inclusion mass lists based on your current search results. Exclusion and inclusion mass lists differ in their usage but have the same basic format. Use this feature to export to a format that can be used in Xcalibur. Exporting is a two-step process:

- Determine what portions of the search results to export.
- Define additional limits of the export.
- * To export exclusion or inclusion mass lists
- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- From the Proteome Discoverer menu bar, choose Search Report > Export Xcalibur Exclusion List. The Export Xcalibur Exclusion/Inclusion Mass List dialog box appears as shown in Figure 77.

Figure 77. Export Xcalibur Exclusion dialog box

🖶 Export Xcalibur Exclusion/Incl ? 	
Items to Be Exported Include filtered out peptides Include NOT filtered out peptides Include selected peptides Include selected search input Include all search input	 — Search results to be exported
Options Export uncharged mass values Export m/z values Retention time window width: 1.00 Lower retention time limit: 1.00 Upper retention time limit: 23.00 Mass precision (decimals): 5 Max concurrent entries: 500 	— Export options
Export Cancel	

- 3. In the Items to Be Exported area, specify which result items should be transferred to the exclusion mass list.
- 4. In the Options area, select either Export uncharged mass values or Export m/z values.
- 5. Choose the proper values for your data set for the time value options.
- 6. Click Export. The Save As dialog box opens.
- 7. Type the File name for the exported list. A success message appears (see Figure 78).

Figure 78. Export successful message

8. Use a standard text editor to view the resulting exclusion mass list (see Figure 79) from your hard drive.

Figure 79. Exported exclusion mass list example

	es., - / - / / - / /	· ··
1597.39804 1754.10373 1606.61972	10.02 11.48 10.48	12.02 13.48 12.48
	un ein einen aus eine	المريد محمد

Export Search Results to Excel

You can export protein and peptide identification results and also the search input and other grids, such as the fragment match matrix, directly into a spreadsheet application, such as Excel.

- To export search results to Excel (example for proteins and peptides)
- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. Select the **Proteins** or **Peptides** tab.
- 3. On the Proteins or Peptides page, right-click anywhere in the table to display the shortcut menu.
- 4. Choose **Export to Excel Workbook**. The Export to Excel Workbook dialog box appears as shown in Figure 80.

Image: Second Section Secti	port To:		
	Image: Constraint of the second state of the second sta		
	· I ☐ Layer 3: Proteins		

Figure 80. Export to Excel Workbook dialog box

- Save Grid as Microsoft Excel File File ? 🗙 Save in: 🞯 Desktop 🕝 🏚 📂 🖽 -¥ 🖳 trial.xls My Documents 🚪 My Computer 🧐 My Network Places My Recent Documents 🛅 BioWorks340MigrationBook_Help 🛅 ForBW331 B 🚞 For Trish 🛅 ISOdrafts Desktop 🚞 OriginalDDfiles 🚞 Reference Y 🚞 TemplateTrial 🚞 Thermo Fisher Master My Documents 🛅 ThermoFisherMaster93 🛅 ThermoFisherStationery 🚞 WebWorks 90 疴 Shortcut to PDuserguide My Computer × File <u>n</u>ame: <u>O</u>pen Save as type: Microsoft Office Excel Workbook (*.xls) ¥ Cancel My Network
- 5. Click browse (...). The Save Grid as Microsoft Excel File dialog box appears.

- 6. Browse and select a location to save the results file.
- 7. In the File name box, type the name of your results file.
- 8. Click **Open**. The Export to Excel Workbook dialog box appears.
- To export only the information from the top layer of the current Results grid, select the Export Top Grid Layer Only check box in the Excel Export Settings area. –or–

To export further grid layers and also the information from the top layer of the current Results grid, clear the **Export Top Grid Layer Only** check box, as shown in the next figure.

Export to Excel Workbook	? 🛛
Export To:	
D:\lssues\ServerTests\mascot_bsa_30.06.xls	
Excel Export Settings	
Export Top Grid Layer Only	
Add Empty Rows between Each Grid Layer	
Repeat Column Header on Each Grid Layer	
Grid Layers to be Included in Excel Export	
Layer 1: Proteins Layer 2: Peptides Layer 3: Proteins	
	Export Cancel

- 10. To divide the layers from each other, select the **Add Empty Rows Between Each Grid** Layer check box.
- 11. Click **Export**. The status of the export appears. When the export is complete, you can open your exported file.

See Figure 81 for an example of an exported report with two layers.

1 2		A	B	C	D	E	F -
-	1	Accession #	Coverage	# Peptides	#AAs	Score	Description
•	2	gi4507761	6.25	1	128	19.18	ubiquitin and ribosomal protein L40 precursor [Homo sapiens]
	6						
-	7	gi11128019	6.666666667	2	105	14.95	cytochrome c [Homo sapiens]
	8						
•	9		Sequence	Modifications	Probability	∆ Score	Rank
•	10		KYIPGTK		3.50	0.00	
	11		YIPGTK		2.14	0.47	
	12						
1	13	gi89026388	5.775075988	2	329	8.00	PREDICTED: hypothetical protein XP_948698 [Homo sapien
	18						
1	19	gi8922081	0.909397103	4	2969	7.25	ash1 (absent, small, or homeotic)-like [Homo sapiens]
	26						
1	27	gi94536811	0.498132005	1	1606	7.22	NEDD4-like ubiquitin-protein ligase 1 [Homo sapiens]
	31	0.000					
	32	gi51890223	2.016942315	5	2479	6.53	centrosomal protein 290kDa [Homo sapiens]
	40						
	41	gi12957488	0.431606906	2	3012	6.21	hypothetical protein CG003 [Homo sapiens]
	46						
	47	gi51988900	1.264755481	2	1186	6.17	XPG-complementing protein [Homo sapiens]
	52						
	53	gi7657562	0.830737279	1	963	6.16	SH3-domain binding protein 4 [Homo sapiens]
	57						
1	58	gi5031951	6.701030928	2	194	6.15	nucleoside diphosphate kinase type 6 [Homo sapiens]
	63			-			

Figure 81. An exported report with two layers

Exporting Spectra

Use the Export Spectra dialog box to select and save the search results or input them into another format.

✤ To export spectra

- 1. Open your search results. See "Understanding Reports and Views" on page 37.
- 2. From the Proteome Discoverer menu bar, choose **Search Report > Export Spectra**. The Export Spectra dialog box appears as shown in Figure 82.

Figure 82. Export Spectra dialog box

	Export Spectra		? 🔀
ſ	Export format		
	Mascot Generic Format (*.mgf)		~
L.	Mascot Generic Format (*.mgf)		
ſ	mzData (*.mzData) Saarah Basult Fila (*.arf)		n i
	Sequest DTA archive (*.dta.zip)		
	O Peptides		
	Destination		
	Deschauori		
l			
		Export	Close

- 3. Click the browse button (...). The Save as dialog box appears.
- 4. In the File name box, type the name of the results file.
- 5. Click **Open**. The Export Spectra dialog box appears.
- 6. Click **Export**. The status of the export appears. When the export is complete, you can open your exported file.

Working with InforSense Discussion

Searching an LC-MS/MS raw file with a peptide-based search engine produces a list of identified proteins, along with peptide and statistical information. Determining the biological meaning of the results involves searching the literature in some manner to obtain pertinent information on each protein that is identified. InforSense workflows automate the process of searching the databases, which include the National Center for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov/sites/entrez) and the Swiss Institute of Bioinformatics ExPASy proteomics server (www.expasy.com).

WARNING Only SwissProt/Uniprot, NCBI, or IPI compatible protein databases yield search results compatible with InforSense Protein Annotation workflows.

Protein accessions denoted as International Protein Index (IPI), GenBank (GI), and SwissProt accession numbers or with TrEMBL names are all compatible with the workflows. Use of the ExPASy Web server requires that GI and IPI numbers be translated into the SwissProt/Uniprot format prior to submission; the NCBI workflows only needs to translate IPI accessions. The workflows facilitate the translations through the Protein Information Resource (PIR) Web service (http://pir.georgetown.edu/). TrEMBL names have undergone significant revisions in recent years and outdated names are not directly recognized by either of the Web services.

To ensure compatibility of search data obtained with older databases, both workflows submit any TrEMBL names they encounter to the automated ExPASy ID Tracker function (http://beta.uniprot.org/) to translate them into the latest representation prior to submission.

InforSense and the Internet

The InforSense Protein Annotation workflows are Internet intensive. Search speeds are a function of your Web service speed.

- Large result files run slower than small files.
- Higher network speeds result in faster search times.
- Loss of network connection, even intermittently (such as with a wireless connection), results in search failure.

Data Retrieval Content Levels

The richness of your data retrieval content depends on the content richness of the Web server. Information for each protein annotation searched might not be complete, due to the nature of the biological databases.

IMPORTANT For a more complete discussion, see the InforSense Protein Annotation Help written for Thermo Fisher Scientific Proteome Discoverer workflows.

Using InforSense Protein Annotation

Proteome Discoverer uses InforSense Protein Annotation to automatically determine the biological context of identified peptides.

To use InforSense

• Choose Tools > InforSense.

InforSense opens a new window where you can choose four predefined workflow options:

- GO Annotation NCBI
- GO Annotation SwissProt
- Metadata Table NCBI
- Meta Table SwissProt

GO Annotation NCBI

GO Annotation NCBI workflow introduction:

The purpose of this workflow is to describe a list of proteins in terms of their associated biological processes, cellular components and molecular functions. The methodology is derived from the Gene Ontology, but uses a higher level abstraction, and does not attempt to capture the more fine-grained definitions in the Gene Ontology. This enables construction of high-level summaries of the set of proteins being investigated. The broad categories are displayed as summary tables and graphical pie charts to give users a rapid overview of the major processes, components, and functions represented in the protein set.

Workflow GO Annotation NCBI description

As for the other workflows, the first step is to extract a list of unique protein identifiers present in the Discoverer search report. These identifiers may refer to any of the protein databases, and the type of identifier in a particular Discoverer report file is determined by the database against which the sequence search was performed in Discoverer. This is defined by the user, and may be any of: NCBI, UniProtKB, IPI, or others. The first stage of the annotation process is therefore to find the equivalent GenBank accession number, if necessary. This is achieved by querying the PIR repository of cross-references (URL) and retrieving the corresponding GenBank primary accession number. The system determines automatically of this lookup is required. The original identifiers in the Discoverer file are retained for later reference.

The list of GenBank accession numbers is then submitted to the NCBI search engine, using a component of the BioSense plug-in. This retrieves all the information in the GenBank sequence entry for each protein in the set. For the purpose of this workflow, the DBSOURCE field of the GenBank entry is searched for Gene Ontology (GO) IDs. These IDs are then submitted to AmiGO to retrieve the text description (GO term) of the GO ID. This term is compared with the reduced dictionary, and the corresponding Category Definition term is appended to the protein data. The dictionary of terms and categories is described in the Appendix.

The frequency of each of the categories in the three groups is calculated for the entire set of proteins being investigated. The number of times a category is represented is tabulated separately for Components, Processes, and Functions in an Excel spreadsheet. These frequencies are also represented as pie charts to give a rapid visual overview of the major components, processes and functions represented in the data set. An additional pie chart shows the fraction of proteins that have, or do not have, GO annotation terms. This gives an indication of how well-characterised the protein set is.

GO Annotation SwissProt

GO Annotation SwissProt workflow introduction:

The purpose of this workflow is to describe a list of proteins in terms of their associated biological processes, cellular components and molecular functions. The methodology is derived from the Gene Ontology, but uses a higher level abstraction, and does not attempt to capture the more fine-grained definitions in the Gene Ontology. This enables construction of high-level summaries of the set of proteins being investigated. The broad categories are displayed as summary tables and graphical pie charts to give users a rapid overview of the major processes, components, and functions represented in the protein set.

Workflow GO Annotation SwissProt description

As for the other workflows, the first step is to extract a list of unique protein identifiers present in the Discoverer search report. These identifiers may refer to any of the protein databases, and the type of identifier in a particular Discoverer report file is determined by the database against which the sequence search was performed in Discoverer. This is defined by the user, and may be any of: NCBI, UniProtKB, IPI, or others. The first stage of the annotation process is therefore to find the equivalent UniProtKB accession number, if necessary. This is achieved by querying the PIR repository of cross-references (URL) and retrieving the corresponding UniProt primary accession number. The system determines automatically of this lookup is required. The original identifiers in the Discoverer file are retained for later reference.

The list of UniProt accession numbers is then submitted to the UniProt search engine (URL), using a component of the BioSense plug-in. This retrieves all the information in the UniProt sequence entry for each protein in the set. For the purpose of this workflow, the database cross-reference lines (DR lines) are searched for Gene Ontology (GO) terms. The text part of any GO terms found are then compared with the reduced dictionary, and the corresponding Category Definition term is appendix.

The frequency of each of the categories in the three groups is calculated for the entire set of proteins being investigated. The number of times a category is represented is tabulated separately for Components, Processes, and Functions in an Excel spreadsheet. These frequencies are also represented as pie charts to give a rapid visual overview of the major components, processes and functions represented in the data set. An additional pie chart shows the fraction of proteins that have, or do not have, GO annotation terms. This gives an indication of how well-characterised the protein set is.

Metadata Table NCBI

Metadata Table NCBI workflow introduction:

The purpose of this workflow is to automatically annotate a list of proteins using data retrieved for each protein from NCBI GenBank. Relevant fields are extracted from the GenBank entries, and reported in an Excel spreadsheet. In addition to reporting fields fields present in GenBank, a specialised lookup of terms in a Thermo-defined list of the major post-translational modifications is also extracted, and reported together with the sequence positions at which the modifications occur.

Workflow Metadata Table NCBI description

The input to this workflow is a search report file from Discoverer in protXML format (ref, URL). A list of protein identifiers is extracted from the protXML file. These identifiers may refer to any of the protein databases, and the type of identifier in a particular Discoverer report file is determined by the database against which the sequence search was performed in Discoverer. This is defined by the user, and may be any of: NCBI, UniProtKB, IPI, or others. The first stage of the annotation process is therefore to find the equivalent GenBank accession number, if necessary. This is achieved by querying the PIR repository of cross-references and retrieving the corresponding GenBank primary accession number. The system determines automatically of this lookup is required. The original identifiers in the Discoverer file are retained for later reference.

The list of GenBank accession numbers is then submitted to GenBank using a component of the BioSense plug-in. This retrieves all the information in the GenBank sequence entry for each protein in the set.

Relevant fields from the returned sequence entries are then extracted and reported in the final Excel report. Two types of information are retrieved: 1. generic annotations extracted directly from the sequence entries, and 2. specific post-translational modifications (PTMs). The generic annotations reported from a GenBank entry are:

- 1. accession number
- 2. Glinumber
- 3. protein description
- 4. comments
- 5. molecular weight (if reported)
- PubMed cross-references
- 7. amino acid sequence
- 8. sequence length

The types of PTMs reported are listed in the PTM dictionary in the Appendix, and incorporated into the final report as follows. If any of the terms or keywords is found in the sequence entries retrieved from NCBI or UniProt, the corresponding category column is filled with the sequence locations of each occurrence in each protein.

Meta Table SwissProt

The Meta Table SwissProt workflow introduction:

The purpose of this workflow is to automatically annotate a list of proteins using data retrieved for each protein from the UniProt knowledge base (UniProtKB). Relevant fields are extracted from the UniProt entries, and reported in an Excel spreadsheet. In addition to reporting fields fields present in UniProtKB, a specialised lookup of terms in a Thermodefined list of the major post-translational modifications is also extracted, and reported together with the sequence positions at which the modifications occur.

Workflow Metadata Table SwissProt description

The input to this workflow is a search report file from Discoverer in protXML format (ref, URL). A list of protein identifiers is extracted from the protXML file. These identifiers may refer to any of the protein databases, and the type of identifier in a particular Discoverer report file is determined by the database against which the sequence search was performed in Discoverer. This is defined by the user, and may be any of: NCBI, UniProtKB, IPI, or others. The first stage of the annotation process is therefore to find the equivalent UniProtKB accession number, if necessary. This is achieved by querying the PIR repository of cross-references (URL) and retrieving the corresponding UniProt The original identifiers in the Discoverer file are retained for later reference.

The list of UniProt accession numbers is then submitted to the UniProt search engine (URL), using a component of the BioSense plug-in. This retrieves all the information in the UniProt sequence entry for each protein in the set.

Relevant fields from the returned sequence entries are then extracted and reported in the final Excel report. Two types of information are retrieved: 1. generic annotations extracted directly from the sequence entries, and 2. specific post-translational modifications (PTMs). The generic annotations reported from a UniProt entry are:

- 1. UniProt primary accession number
- 2. Other UniProt accession numbers
- 3. UniProt ID
- 4. UniProt description (DE) line
- 5. Comment lines
- amino acid sequence
- 7. sequence length

The types of PTMs reported are listed in the PTM dictionary in the Appendix, and incorporated into the final report as follows. If any of the terms or keywords is found in the sequence entries retrieved from NCBI or UniProt, the corresponding category column is filled with the sequence locations of each occurrence in each protein.

Customizing Proteome Discoverer

Proteome Discoverer offers several ways to customize your search analysis experience:

- Customize the toolbar of the main window.
- Customize the quantitation methods available to use during a search.
- Customize the chemical modifications available to use during a search.
- Customize the cleavage reagents by modifying the reagents and their corresponding settings.
- Register a new .fasta file to use for your search.

Contents

- Customizing the Toolbar
- Customizing Cleavage Reagents
- Customizing Chemical Modification Settings
- Using FASTA Database Administration

Customizing the Toolbar

Proteome Discoverer comes with a number features and tools that are accessible with a click of a toolbar icon. The toolbar provides quick access to most of the commonly used Proteome Discoverer features. The following sections describe how you can change the display and the layout of the toolbar:

- Customizing the Toolbar Layout
- Customizing Toolbar Icons, Fonts, and Tooltips Display

Customizing the Toolbar Layout

From the toolbar, you can add or remove access to other programs. These programs have the .exe extension. Toolbar buttons are available for most menu commands. You can also restore the toolbar to the default settings.

- Restoring Default Toolbar Settings
- Adding Shortcut Keys
- Removing and Repositioning Tools on the Toolbar

Restoring Default Toolbar Settings

* To restore your toolbar

1. On the toolbar, click 💌 to access the toolbar menu.

- 2. Choose Customize.
- 3. Select the menu you want to reset.
- 4. Click Reset. A message box appears to confirm your change.
- 5. Click **OK** to restore your menu selection.
Adding Shortcut Keys

***** To add shortcut keys to a command

- 1. On the toolbar, click 💌 to access the toolbar menu.
- 2. Choose **Customize**. The Customize dialog box appears.
- 3. Click the **Commands** tab. The Commands page appears.

All Commands Jnassigned	File View Tools Window Help	• • • •
elected command:	Close	×

- 4. Click Keyboard. The Customize Keyboard dialog box opens.
- 5. In the Customize Keyboard dialog box, scroll through the Commands menu to find the command and its corresponding keyboard shortcut.
- 6. From the Specify a Shortcut list, select a shortcut.
- 7. Below the Specify a Shortcut list, check to see if the shortcut is unassigned.
- 8. If the shortcut is unassigned, click **Assign**. The shortcut is now assigned to your command choice.
- 9. In the Customize Keyboard dialog box, click Close. Your changes are saved.
- 10. In the Customize dialog box, click Close.

Removing and Repositioning Tools on the Toolbar

***** To remove a set of tools from the toolbar

- 1. On the toolbar, click 💌 to access the toolbar menu.
- 2. Choose **Customize**. The Customize dialog box appears.
- 3. Clear the check box adjacent to the tool you want removed from the toolbar.

	Customize	
Clear the check box to remove a tool from the toolbar.	Toolbars Commands Options Toolbars: Image: Commands Mew Image: Commands Mew Mew Image: Commands Image: Commands Mew	
	Keyboard Close	

The tool is visible in the menu, but the icon is removed from the toolbar.

4. Click **Close** to close the Customize dialog box.

✤ To remove a single tool icon from the toolbar

1. On the toolbar, click 💌 to access the toolbar menu. The active toolbar commands have a checkmark next to them.

2. Clear the check mark adjacent to the tool you want removed from the toolbar. The tool is visible on the menu but the icon is removed from the toolbar.

✤ To reposition toolbar buttons

1. Select 📱 immediately to the right of the toolbar section you want repositioned.

A set of cross arrows (\clubsuit) appears when you select the toolbar section.

2. Drag the toolbar section to its new position.

Customizing Toolbar Icons, Fonts, and Tooltips Display

Use the Options page in the Customize dialog box to customize toolbar features. You can resize the toolbar icons and fonts, change your tooltips display to include corresponding icons and shortcut keys, or hide the tooltips display from view.

Figure 83. Customize dialog box

	Customize	×
	Toolbars Commands Options -Personalized Menus and Toolbars	
	Always show full menus Show full menus after a short delay	
Resizing icons	-Other	
	Large Icons on Menus Floating Toolbar Fade Delay	
	Large Icons on Toolbars 0 🗘 milliseconds	
	List font names in their font	
Customizing	Show shortcut keys in ScreenTips	
tooltips	Menu Animations: None	
	Keyboard Close	

To resize icons on toolbars and menus

- 1. On the toolbar, click 💌 to access the toolbar menu.
- 2. Choose **Customize**. The Customize dialog box appears.
- 3. Click **Options**. The Options page appears.
- 4. To increase the size of the menu and toolbar icons, select the Large Icons on Menus option and the Large Icons on Toolbars option.
- 5. To save your changes and close the Customize dialog box, click Close.

To customize tooltips

- 1. On the toolbar, click 💌 to access the toolbar menu.
- 2. Choose **Customize**. The Customize dialog box appears.
- 3. Click **Options**. The Options page appears.
- 4. To display tooltips when you hover over the icons, select the **Show ScreenTips on toolbars** option.
- (Optional) To display shortcut keys with the tooltips, select the Show shortcut keys in ScreenTips option. You must select Show ScreenTips on toolbars to use the Show shortcut keys in ScreenTips option.
- 6. To save your changes and close the Customize dialog box, click Close.

To hide tooltips

- 1. On the toolbar, click 💌 to access the toolbar menu.
- 2. Choose Customize. The Customize dialog box appears.
- 3. To hide tooltips when you hover over the icons, clear the **Show ScreenTips on toolbars** option.
- 4. To save your changes and close the Customize dialog box, click Close.

Customizing Cleavage Reagents

In the Cleavage Reagents view, you can add, remove, and modify the reagents and their corresponding settings. The reagents table contains the cleavage sites, cleavage inhibitors, abbreviations, and cleavage specificities.

✤ To open the Cleavage Reagents view

1. Choose Administration > Cleavage Reagents. The cleavage reagents view appears.

Figure 84. Cleavage reagents displayed in the Proteome Discoverer window

👯 Thermo Proteome Discoverer 1.0.37						
File <u>Vi</u> ew <u>S</u> earch Report <u>Q</u> uantitation Processing V	/orkflow <u>E</u> ditor <u>A</u> dmin	istration <u>T</u> ools <u>W</u>	/indow <u>H</u> elp			
👹 🗐 🗉 🗔 🖾 🔯 🚳 🖬 🖬 🖬 🛋	<i>X</i>	🖩 🚚 🦗 SEQUES	5T 🙀 Mascot 🙀 ZCo	re 🖵 🚹 🛔	1426-1	🗟 🗟 💐 🗣 🗟 🔯 🔭 🗸
NPQ-9-Prot-ETD-2-10-07-run58-mascotdecoy.msf	× Administrat	ion X				•
Process Management	Delete Name V	Apply Cleavage Sites V	7 Cleavage Inhibitors ム マ	Offset ⊽	・ Abbreviation マ	Cleavage Specificities 🛛
Job Queue	* Click here to add	a new record				
	Trypsin(KRLNH)	KRLNH	-	1	Try_a	Full
Database Content Management 🔒	Chymotrypsin	FWYL	-	1	ChyTr	Full
FASTA Files	Clostripain	R	-	1	-	Full
	Cyanogen_Bromi	м	-	1	-	Full
Chemical Modifications	IodosoBenzoate	W	-	1	-	Full
	Proline_Endopept	P	-	1	-	Full
Cleavage Reagents	Staph_Protease	E	-	1	-	Full
	GluC	ED	-	1	-	Full
Quantitation Methods	LysC	к	-	1	-	Full
	AspN	D	-	0	-	Full
License Management 🏦	No-Enzyme	-	-	0	-	Unspecific; No Cleavages
lisenses	Trypsin	KR	Р	1	Try	Full
	Chymotrypsin(F	FWY	Р	1	ChTr	Full
	Trypsin_K	к	Ρ	1	-	Full
Configuration 🕆	Trypsin_R	R	Р	1	-	Full
Workflow Nodes	Elastase	ALIV	Р	1	-	Full
SEQUEST	Elastase/Tryp/Ch	ALIVKRWFY	Ρ	1	-	Full
×* ·						
Ready						

- 2. To modify the cleavage reagents list, click the Name column cell, Click here to add.
- 3. Type the information, such as LysN.
- 4. To save the modification, click Apply.

The following table lists the enzymes and reagents with cleavage properties that you can define when you add a new reagent.

Parameter	Description	
Name	Specifies the name of the reagent used for the protein digestion.	
Cleavage Sites	Specifies the position (amino acid) at which to cleave the sequence.	
Cleavage Inhibitors	Specifies the amino acids that block cleavage when adjacent to the cleavage site.	
Offset	 Specifies whether the cleavage occurs before or after the amino acids listed in the Cleavage Sites column. 0 - Cleavage occurs to the left of the amino acid. 1 - Cleavage occurs to the right of the amino acid. 	
Abbreviation	Specifies the user-defined abbreviation.	
Cleavage Specificities	 You can select more than one cleavage specificity. The available cleavage specificities are as follows: Full - Every cleavage must be at the specified cleavage site. Semi - Only one end of the sequence needs to have the specified cleavage. Semi (N-Term) - Only the N-terminal side of the sequence needs to have the specified cleavage. Semi (C-Term) - Only the C-terminal side of the sequence needs to have the specified cleavage. 	

Table 16. Enzymes and reagents with cleavage properties

Customizing Chemical Modification Settings

With Proteome Discoverer, you can update the chemical modifications you use to conduct a peptide identification search. You can import a new list or the latest UNIMOD list. You can also modify the chemical modification list provided by adding amino acids to the modifications, by creating new modifications, or by activating or deactivating existing modifications.

Note A modification must be active to be usable during a search.

Use the chemical modification feature on the Administration page to customize the chemical modifications you use to do your search. Use the following list of tasks to update the chemical modifications:

- Entering and Deleting Chemical Modifications
- Adding and Removing Amino Acids
- Importing Chemical Modifications

Entering and Deleting Chemical Modifications

To add a new modification

- 1. Choose **Administration > Maintain Chemical Modifications**. The Chemical Modifications view appears.
- 2. Click the cell, Click here to add a new record.

An empty row appears.

Click to add a row.

Т

		Modification V	Delta Mass 🛛 🗸	Delta Average Mass 🛛	Substitution V	Leaving Group V
E.	*	Click here to add a new re	cord	_		
	Þ	Oxidation	15.994915	15.994915	0	
		Alkylation	57.0704	58.0704	0	
æ-		Phosphorylation	79.966331	79.9799	H 03 P	
Ð-		Propionamide	71.037114	71.0779	C3 H5 N O	
		Cysteic_acid	47.984744	47.9982	03	
		Pyro-Glu	·17.026549	-17.0305		NH3
		Hydroxylation	15.994915	15.9994	0	
Ð-		Formylation	27.994915	28.0101	CO	
		Palmitoylation	238.229666	238.4088	C16H300	
		Sulfation	79.956815	80.0632	\$03	
		Methylation	14.01565	14.0266	CH2	
.		di-Methylation	28.0313	28.0532	C2H4	
	Г					-

3. In the empty row, enter the name of the modification, the delta masses, the chemical substitution, the chemical group that is leaving, the position, and the abbreviations of the modifications.

Note Both the substitution and leaving group are for display purposes only.

- 4. To accept the new modifications, click Enter.
- 5. Add an amino acid to the modifications. See "Adding and Removing Amino Acids" on page 141.

To update an existing modification

1. Choose **Administration > Maintain Chemical Modifications**. The Chemical Modifications view appears.

🐏 Thermo Discoverer							
Elle View Search Report Processing	Administration Icols Window (<u>t</u> elp 🚓 🚳 🕵 🥵 🕽					
9ProteMix_Sequest_Decoy.msf	9ProteMix_Sequest_Decoy.msf EQuest workflow.msf Administration ×						
Process Management 💡	Import Delete	Apply	Data da su construcción de la co	Calculation of	Law ins (
Database Content M 👷	* Click here to add a new re	Delta Mass Y cord	Delta Average Mass V	Substitution V			
Fasta Files	Oxidation	15.994915	15.994915	0			
dicin .	Alkylation	57.0704	58.0704	0			
Chemical Modifications	Phosphorylation	79.966331	79.9799	H 03 P			
	Propionamide	71.037114	71.0779	C3 H5 N O			
Cleavage Reagents	Cysteic_acid	47.984744	47.9982	03			
	Pyro-Glu	-17.026549	·17.0305		NH3		
License Management 💡	Hydroxylation	15.994915	15.9994	0			
Confirmation	 Formylation 	27.994915	28.0101	CO			
Connguration \$	Palmitoylation	238.229666	238.4088	C16H300			
	Sulfation	79.956815	80.0632	\$03			
	Methylation	14.01565	14.0266	CH2			
	di-Methylation	28.0313	28.0532	C2H4			
	tri-Methylation	42.04695	42.0797	C3H6			
	Carbanylation	43.005814	43.0247	CHNO	1		
	1				•		
Ready							

- 2. In the Modification column, click the cell you want to update.
- 3. Type your changes for the delta masses, the substitution, the group it is leaving, the position, or the abbreviations of the modifications.
- 4. To accept the changes, click Apply.

To delete a modification

- 1. Choose Administration > Maintain Chemical Modifications. The Chemical Modifications view appears.
- 2. Select the row of the modification you want to delete.
- 3. Click **Delete**. The row is removed from the chemical modifications table.

Related Topics

- Adding and Removing Amino Acids
- Importing Chemical Modifications

Adding and Removing Amino Acids

- ✤ To add an amino acid to a modification
- 1. Choose Administration > Maintain Chemical Modifications.
 - The Chemical Modifications view appears.

Thermo Discoverer 1.0.25										
Ele View Search Report Processin	ng Adm	ninistration <u>T</u> ools <u>W</u>	ndow	Help	4	A D -				
9ProteMix_Sequest_Decoy.msf	EC	Quest workflow.msf	Admi	nistration						• ×
Process Management 🗧 🗧 🗧		Import Delet Modification	te V	Apply Delta Mass	V	Delta Average Mass	V	Substitution	V	Leavi
Database Content	*	Click here to add a r	newre	cord						<u> </u>
Easta Eller		Oxidation	-	15.994915	_	15.994915		0	Ť	_
T data ries		Alkylation		57.0704		58.0704		0		
Chemical Modifications		Amino Acid Name Cysteine	7	One Letter Code C	V					
Cleavage Reagents	-	Aspartic Acid	dane	D	_					
License Management 💝		Modification	V	Delta Mass	7	Delta Average Mass	7	Substitution	V	Leavi
Configuration 🛛 🗧		Phosphorylation		79.966331		79.9799		H 03 P		
	٠	Propionamide		71.037114		71.0779		C3 H5 N 0		
	•	Cysteic_acid		47.984744		47.9982		03		
	•	Pyro-Glu		-17.026549		-17.0305				NH3
		Hydroxylation		15.994915		15.9994		0		
		Formylation		27.994915		28.0101		CO		-
	•		_				-			•
Ready										

Click to expand row.

Click to add a row.

- 2. Click + to the left of the modification row you want to update. The row expands and the associated amino acids appear.
- 3. Click the cell, Click here to add a new record. An empty row appears.
- 4. In the empty row, select the amino acid from the list. The amino acid and the one letter abbreviation appear.
- 5. To save the modifications, click Apply.

* To delete an amino acid from a modification

- 1. Choose **Administration > Maintain Chemical Modifications**. The Chemical Modifications view appears.
- 2. Click + to the left of the modification row you want to delete. The row expands and the associated amino acids appear.
- 3. Select the amino acid row that you want to delete.
- 4. Click Delete. The row is removed from the chemical modifications table.

Related Topics

- Entering and Deleting Chemical Modifications
- Importing Chemical Modifications

Importing Chemical Modifications

You can import chemical modifications from a local file or get an updated version from Unimod, a public domain database (www.unimod.org).

- To import chemical modifications from UNIMOD
- 1. Choose Administration > Maintain Chemical Modifications. The Chemical Modifications view appears.
- 2. Click Import and select UNIMOD.

The UNIMOD URL appears.

Import Modifications		? 🗙
Import From:		
Unimod	http://www.unimod.org/xml/unimod_tables.xml	
	✓ overwrite existing Import	Close

- 3. Click Import. A status message appears.
- 4. When the upload is complete, click **Close**.
- To import chemical modifications from a local file
- 1. Choose **Administration > Maintain Chemical Modifications**. The Chemical Modifications view appears.
- 2. Click Import and select Local File. Browse for your file.
- 3. Click Import. A status message appears.

4. When the upload is complete, click Close.

By using the Chemical Modifications view, you can add amino acids to existing modifications and create new modifications.

Thermo Discoverer 1.0.29		
Ele Yew Search Report Processing Wo	kflow Editor Administration Iools Window Help] 🖼 🔯 🗸 🖗 🅀 🖓 🗸 🖁 👫 🛔 🎘 🕼 🗸 🕼 🖉 🕼 🖉 🐺 🐺 🖡 🔯 🗸	
Administration		▼ ×
Process Management	Import Delete Apply	
Process Management 👷	Modification 🗸 Delta Mass 🗸 Delta Average Mass 🗸 Substitution	Z Leaving C
Job Queue	* Click here to add a new record	
	Applied Biosystems origin 442.224991 442.5728 H(34) C(20) N(4	
Database Content 🙊 🔒	N-isopropylcarboxamido 99.068414 99.1311 H(9) C(5) N 0	
📑 FASTA Files 🛛 🖪	Biotinyl-iodoacetamidyl-3, 414.193691 414.5196 H(30) C(18) N(4	
	Dehydration -18.010565 -18.0153 H(-2) 0(-1)	
Chemical Modifications	Dehydration -18.010565 -18.0153 H(-2) O(-1)	
Cleavage Reagents	Amino Acid Name ▼ One Letter Cod Asparagine N Gittamine 0	
License Management 👷		
Licenses	* Click here to add a new record	92 - C
	Modification ♀ Delta Mass ♀ Delta Average Mass ♀ Substitution *	Z Leaving C
Configuration	Dehydration -18.010565 -18.0153 H(-2) O(-1)	<u>.</u>
	pyridylacetyl 119.037114 119.1207 H(5) C(7) N 0	- _
Worknow Nodes		<u> </u>
Ready		

 Table 17. Chemical modifications parameters (Sheet 1 of 2)

Parameter	Description
Modification	Displays the type of modification.
Delta Mass	Displays the mass difference associated with the modification.
Delta Average Mass	Displays the difference between two adjacent average mass measurements.
Substitution	Displays the chemical group substitution that occurs with the modification.
Leaving group	Displays the chemical group that is missing.
Position	Displays the location where the modification might occur. The selections are Any, Any_C_Terminus, Any_N_Terminus, Protein_C_Terminus, and Protein_N_Terminus.
Abbreviation	Displays the abbreviation of the modification displayed in reports.

Parameter	Description
Amino Acid Name	Lists the amino acids that Proteome Discoverer can apply the modification to.
IsActive	Makes modifications available for search parameters.
UniMod Accession #	Go to http://www.unimod.org.
One letter code	Displays the single letter abbreviation of the amino acid.

Table 17. Chemical modifications parameters (Sheet 2 of 2)

Using FASTA Database Administration

When you use FASTA Database Utilities options, you can import FASTA files.

You can perform these actions in Proteome Discoverer and customize how your FASTA file is added to the modifications table.

Figure 85. FASTA file management

Add FASTA File Remo button buttor		ve FASTA File າ						
		👵 Add FASTA File	e 🥫 F	Remove FASTA File	🗶 Cancel 🖕			
		Name		Size	#Sequences	#Residues	Status	Last Modified
	×	Mascot5_MSDB		0	79	63387	Imported	05/22/2008
		equine.fasta		152951	346	75453	Available	08/02/2004
		bovine2.fasta		687086	1057	242627	Available	06/23/2006

To add a FASTA file

- 1. Choose **Administration > Maintain FASTA file**. The Administration page appears with the FASTA File view.
- 2. Click 📑 Add FASTA File
- 3. Browse for and select the FASTA file that you want to process.
- 4. Click OK.

To delete a FASTA file

- 1. Choose **Administration > Maintain FASTA file**. The Administration page appears with the FASTA File view.
- 2. Select \blacktriangleright at the beginning of a row to activate the row.
- 3. Click 📓 Remove FASTA File

The amount of time it takes to process a FASTA file directly depends on the file size. When a FASTA file finishes processing, the status column displays the message, Available. The FASTA file is now available to be used for a peptide search with Proteome Discoverer.

Chemistry References

The following tables provide the mass values, the descriptions of enzyme properties, and the descriptions of fragment ions used throughout Proteome Discoverer:

- Amino Acid Mass Values
- Modification Values
- Enzyme Cleavage Properties
- Fragment Ions

Amino Acid Mass Values

Proteome Discoverer uses the amino acids symbols and mass values listed in Table 1 and Table 2.

Amino acid	One-letter code	Three-letter code	Monoisotopic mass	Average mass	Sum formula
Glycine	G	Gly	57.02147	57.0517	C2H3NO
Alanine	А	Ala	71.03712	71.0787	C3H5NO
Serine	S	Ser	87.03203	87.078	C3H5NO2
Proline	Р	Pro	97.05277	97.1168	C5H7NO
Valine	V	Val	99.06842	99.1328	C5H9NO
Threonine	Т	Thr	101.04768	101.1051	C4H7NO2
Cysteine	С	Cys	103.00919	103.145	C3H5NOS
Isoleucine	Ι	Ile	113.08407	113.1598	C6H11NO
Leucine	L	Leu	113.08407	113.1598	C6H11NO
Asparagine	Ν	Asn	114.04293	114.1039	C4H6N2O2
Aspartic Acid	D	Asp	115.02695	115.0885	C4H5NO3
Glutamine	Q	Gln	128.05858	128.13091	C5H8N2O2
Lysine	К	Lys	128.09497	128.1745	C6H12N2O

 Table 1.
 Amino acid mass values (Sheet 1 of 2)

Amino acid	One-letter code	Three-letter code	Monoisotopic mass	Average mass	Sum formula
Glutamic Acid	E	Glu	129.0426	129.1156	C5H7NO3
Methionine	М	Met	131.0405	131.1994	C5H9NOS
Histidine	Н	His	137.05891	137.1414	C6H7N3O
Phenylalanine	F	Phe	147.06842	147.1772	C9H9NO
Arginine	R	Arg	156.10112	156.188	C6H12N4O
Tyrosine	Y	Tyr	163.06332	163.17661	C9H9NO2
Tryptophan	W	Trp	186.07932	186.2141	C11H10N2O

Table 1. Amino acid mass values (Sheet 2 of 2)

Table 2.Special amino acids

Amino acid	One-letter code	Three-letter code	Monoisotopic mass	Average mass	Sum formula
Avrg. N/D	В	Bnd	114.53494	114.5962	C4H5NO3
Avrg. Q/E	Z	Zqe	128.55059	128.62326	C5H7NO3
Unknown acid (X)	Х	Xxx	0	0	
Seleno cysteine (U)	U	Sec	150.0369	144.95959	C3H5NOF

Modification Values

Chemical modifications are listed in Table 3. See "Working with Chemical Modifications."

Table 3. Modification values (Sheet 1 of 2)

Modification	Monoisotopic mass	Average mass
Deamidation	0.98402	0.98480
Methylation	14.01565	14.02660
Hydroxylation	15.99492	15.99940
Oxidation	15.99492	15.99940
Formylation	27.99491	28.01010
Acetylation	42.01057	42.03670
Carboxyamidomethylation	57.02146	57.05130
Carboxymethylation	58.00548	58.03610
Propionamide	71.03711	71.07790
Sulfation	79.95682	80.06320

 Table 3.
 Modification values (Sheet 2 of 2)

Modification	Monoisotopic mass	Average mass
Phosphorylation	79.96633	79.97990

Note Go to www.unimod.org/xml/unimod_tables.xml for more modification values.

Enzyme Cleavage Properties

Table 4 lists the enzymes and reagents with cleavage properties.

 Table 4.
 Cleavage properties of enzymes and reagents

Enzymes/Reagents	Cleaves after	Cleaves before	Except when	
Enzymes for digestion				
Trypsin K	К		P is after K	
Trypsin R	R		P is after R	
Trypsin (KR)	K or R			
Trypsin (KRLNH)	K, R, L, N, or H			
Trypsin (KR/P)	K or R		P is after K or R	
Trypsin (KRLNH/P)	K, R, L, N, or H		P is after K, R, L, N, or H	
Chymotrypsin	F, W, Y, or L			
Chymotrypsin (FWY)	F, W, or Y		P is after F, W, or Y	
Clostripain	R			
Proline_Endopept	Р			
Staph_protease	Е			
GlucC	E or D			
LysC	К			
AspN		D		
Elastase	A, L, I, or V		P is after A, L, I, or V	
Elastase/Tryp/Chymo	A, L, I, V, K, R, W, F, or Y		P is after A, L, I, V, K, R, W, F, or Y	
Chemicals for degradation				
Cyanogen Bromide	М			
Iodobenzoate	W			

Fragment lons

Fragment ions of peptides are produced by several different fragmentation techniques such as ECD, ETD, CID, higher-energy C-trap dissociation (HCD), and infrared multiphoton dissociation (IRMPD).

As an example, low energy CID spectra are generated by MS/MS and ESI and are sequence specific. The fragment ion spectra contain peaks of the fragment ions formed by cleavage of the N-CR bond and are used to determine amino acid sequences. A fragment must have at least one charge for it to be detected.

The fragment ions produced are identified according to where they are fragmented in the peptide. Fragment ions A, B, and C have a charge on the N-terminal side, and fragment ions X, Y, and Z have a charge on the C-terminal side. Fragment ions A*, B*, and Y* are ions that have lost ammonia (-17 Da), and fragment ions A°, B°, and C° are ions that have lost water (-18 Da). The subscript next to the letter indicates the number of residues in the fragment ion.¹

Table 5 summarizes the fragment ions used in Proteome Discoverer.

lons	Description
А	Charge on N-terminal side
В	Charge on N-terminal side
С	Charge on N-terminal side
Y	Charge on C-terminal side
Ζ	Charge on C-terminal side
B*	B ion that has lost ammonia (-17 Da)
Y*	Y ion that has lost ammonia (-17 Da)
Bo	B ion that has lost water (-18 Da)
Yo	Y ion that has lost water (-18 Da)

Table 5.Fragment ions

¹For more information on fragment ions and nomenclature, see *Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides*; Roepstorff, P. and Fohlman, J.; Biomed Mass Spectrum, 11(11) 601 (1984).

FASTA Reference

This FASTA reference contains the mass values, the descriptions of enzyme properties, and the fragment ion descriptions used throughout Proteome Discoverer. It is an overview of the most important FASTA databases and the parsing rules Proteome Discoverer uses to obtain the accession# and the description.

NCBI

This non-redundant database is compiled by the NCBI (National Center for Biotechnology Information) as a protein database for Blast searches. It contains non-identical sequences from GenBank CDS translations, PDB, Swiss-Prot, PIR, and PRF.

http://www.ncbi.nih.gov/BLAST/blast_databases.html

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz

A typical NCBI title line follows:

```
>gi|70561|pir||MYHO myoglobin - horse_i|418678|pir||MYHOZ myoglobin -
common zebra (tentative sequence) [MASS=16950]
```

FASTA ID:

- Accession#: gi70561
- Description: myoglobin horse_i

MSIPI

MSIPI is a database derived from IPI that contains additional information about cSNPs, N-terminus peptides, and known variants in a format suitable for mass spectrometry search engines. MSIPI is produced by the Max-Planck Institute for Biochemistry at Martinsried and the University of Southern Denmark, and distributed by the European Bioinformatics Institute (EBI).

ftp://ftp.ebi.ac.uk/pub/databases/IPI/msipi/current/

A typical MSIPI title line follows:

```
>MSIPI:IPI00000001.2| Gene_Symbol=STAU1 Isoform Long of
Double-stranded RNA-bin ding protein Staufen homolog 1 lng=577 #
CON[595,R,359,A] #
```

FASTA ID:

- Accession#: IPI0000001.2
- Description: Isoform Long of Double-stranded RNA-bin ding protein Staufen homolog 1 lng=577 # CON[595,R,359,A] #

IPI

IPI (International Protein Index) is compiled by the EBI to provide a top-level guide to the main databases that describe the human and mouse proteomes: SWISS-PROT, TrEMBL, NCBI RefSeq, and Ensembl.

http://www.ebi.ac.uk/IPI/

ftp://ftp.ebi.ac.uk/pub/databases/IPI/current/

A typical IPI title line follows:

```
>IPI:IPI00685094.1|SWISS-PROT:Q2KIJ2|ENSEMBL:ENSBTAP00000028878|REFSEQ:NP
_001073825;XP_593190 Tax_Id=9913 Gene_Symbol=MGC137286;L0C515210
Uncharacterized protein Clorf156 homolog
```

FASTA ID:

- Accession#: IPI00685094.1
- Description: Uncharacterized protein Clorf156 homolog

UniRef100

UniRef, also known as UniProt NREF, is a set of comprehensive protein databases curated by the Universal Protein Resource consortium. UniRef100 contains only non-identical sequences, where as UniRef90, and UniRef50 are non-redundant at a sequence similarity level of 90 percent and 50 percent, respectively.

http://www.ebi.ac.uk/uniref/

ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref100/uniref100.fasta.gz

A typical UniRef100 title line follows:

>UniRef100_Q4U9M9 Cluster: 104 kDa microneme-rhoptry antigen precursor; n=1; Theileria annulata|Rep: 104 kDa microneme-rhoptry antigen precursor -Theileria annulata

FASTA ID:

- Accession#: Q4U9M9
- Description: Cluster: 104 kDa microneme-rhoptry antigen precursor; n=1; Theileria annulata|Rep: 104 kDa microneme-rhoptry antigen precursor - Theileria annulata

SwissProt & TrEMBL

The SwissProt database is developed by the SWISS-PROT groups at SIB and EBI.

TrEMBL is a computer-annotated supplement of SWISS-PROT that contains all the translations of EMBL nucleotide sequence entries not yet integrated in SWISS-PROT.

http://www.expasy.org/sprot/

ftp://ftp.expasy.org/databases/uniprot/knowledgebase/uniprot_sprot.fasta.gz

ftp://ftp.ebi.ac.uk/pub/databases/uniprot/knowledgebase/uniprot_trembl.fasta.gz

A typical SwissProt title line follows:

```
>Q43495|108_SOLLC Protein 108 precursor - Solanum lycopersicum (Tomato) (Lycopersicon esculentum)
```

FASTA ID: 108_SOLLC

- Accession#: Q43495
- Description: Protein 108 precursor Solanum lycopersicum (Tomato) (Lycopersicon esculentum)

MSDB

The MSDB database is compiled by the Proteomics Group at Imperial College London using the following source databases: PIR, Trembl, GenBank, Swiss-Prot, and NRL3D.

http://csc-fserve.hh.med.ic.ac.uk/msdb.html

ftp://ftp.ncbi.nih.gov/repository/MSDB/

A typical MSDB title line follows:

```
>CBMS Ubiquinol-cytochrome-c reductase (EC 1.10.2.2) cytochrome b - mouse mitochondrion
```

FASTA ID:

- Accession#: CBMS
- Description: Ubiquinol-cytochrome-c reductase (EC 1.10.2.2) cytochrome
 b mouse mitochondrion

Custom Database Support

Proteome Discoverer also has two "general" parsing rules to support custom sequence database formats. The generic parsing rules are applied only if no other parsing rule matches the given FASTA title line.

Custom Parsing Rule A

This parsing rule is used, if the FASTA ID, the accession#, and the description are separated by a pipe ('|') symbol. A typical FASTA title line, which matches this parsing rule, would look like this one:

```
>tr|Q18FC3|Q18FC3_HALWD IS1341-type transposase - Haloquadratum walsbyi
(strain DSM 16790).
```

FASTA ID: Q18FC3_HALWD • Accession#: Q18FC3 • Description: IS1341-type transposase - Haloquadratum walsbyi (strain DSM 16790).

Custom Parsing Rule B

This parsing rule is used if the accession# and the description are separated by using a whitespace. A typical FASTA title line, which matches this parsing rule, would look like this one:

>HP0001 hypothetical protein {Helicobacter pylori 26695}

FASTA ID:

```
• Accession#: HP0001
```

• Description: hypothetical protein {Helicobacter pylori 26695}

Custom Parsing Rule C

This parsing rule is used if the FASTA title line only contains the accession#. A typical FASTA title line, which matches this parsing rule, would look like this one:

>143B_HUMAN

FASTA ID:

- Accession#: 143B_HUMAN
- Description: 143B_HUMAN

Index

Symbols

```
.dta 18
.msf
introduction 18, 26
load 59
naming 56
.raw 18
.srf
introduction 18
open 59
.xml 117
```

A

add a FASTA 144 add to a FASTA database file 62, 144 adding and removing amino acids 141 administration cleavage reagents, open 137 maintain chemical modifications, add 141 maintain chemical modifications, add new 139 maintain chemical modifications, delete 142 maintain chemical modifications, import 142 maintain chemical modifications, import from UNIMOD 142 maintain chemical modifications, update 140 maintain chemical modifications.delete 140 maintain FASTA file, add 144 maintain FASTA file, delete 144 quantitation methods 67, 68 amino acid corresponding 66 mass values 147 modification 141, 142 modifications table 66 amino acid modifications add 141 delete 142 import from a local file 142 import from local file 142 import from UNIMOD 142

amino acid symbols 147 analysis, detailed 117 analyze raw MS data overview 14 animation option 29 assess the abundance and intensity of the precursor 113

C

chart chromatogram 100 extracted ion chromatogram 101 fragment match 115 isotope 113 peptide distribution 103 chemical modification, customizing 138 chemical modifications delete 140 importing 142 list 148 new 139 open 66 quick access 9 select 29 update 140 Chemical Modifications view 143 chromatogram extracted ion chart 101 yellow range, selected retention time range 100 chromatogram view red bars, elution time of all identified peptides 100 CID and ETD search algorithm discussion 14 CID, collision-induced dissociation 14 cleavage after 149 before 149 enzymes and reagent properties 149 N-CR bond 109, 150 reagents, customizing 137 cleavage inhibitors, definition 138 cleavage properties list 149

cleavage reagents quick access 9 cleavage sites cleavage reagents 137 definition 138 offset 138 close report 28 Column Chooser 82 complex mixtures 17 confidence levels, database searches 46 confidence settings, peptide 46, 96 configuration quick access 10 copying a view 117 create a search workflow 53 current job status, quick access 9 customize chemical modifications 143 customizing toolbar 131 toolbar display 135 toolbar layout 132 tooltips 136 customizing chemical modification settings 138 customizing cleavage reagents 137

D

example filter criteria for MH+ 89, 91 data conduct analysis 13 exporting 18 identification 17 summary screens 17 data files 18 database deleting a file 144 renaming a file 144 database selection 29 deactivate a filter 87 decoy database option peptide confidence 35 decoy database search filter settings 46 results 65 using 65 wizard setting 95 decoy search feature 93

deleting modification 140 toolbar button in Qual Browser 135 detailed analysis 117 display filtered rows 92

E

ECD, electron-capture dissociation 14 edit quantitation overview 20 peptide ratios 20 quantitation spectrum 21 show report intensities 21 enzyme manager, cleavage reagents 137 enzyme type, defining in SEQUEST Search Wizard 35 enzymes reagents, cleavage properties of 149 enzymes and reagents, list 138 ETD electron-transfer dissociation 14 with ECD, and CID data, SEQUEST 17 ETD and CID search algorithm discussion 14 ETD and ECD ZCore 16 ETD, electron-transfer dissociation 14 example column header sorting 79 exported exclusion mass list 119 filter settings 89 filter your search results 85 gene ontology (GO) three components 24 inverted filter 48, 85, 86 multiconsensus report 42 proteins and peptides export 119 retention time difference 33 SEQUEST Search Wizard 30 Workflow Editor 52 Workflow Editor palette 51 Workflow Report 38 workflow workspace graphic 51 Excel, creating reports 18 experimental bias 69 export grids such as fragment match matrix 119 protein and peptide identification results 119 search input 119 exporting and reporting data, introduction 18 exporting data, how to 117 extracted example ion chromagraph graph 72, 115

extracted ion chromatogram display the results 101 view 107 XIC 98

F

false discovery rate false positive rate 93 FDR 64 new target 96 SEQUEST 17 false discovery rates determining 95 false positive identifications 64 false positive rate false discovery rate 93 FDR 64 ZCore 16 FASTA Database Utilities 62, 144 FASTA file add 144 deleting 144 renaming 144 FASTA files quick access 9 FDR, false discovery rate 64 **FDRs** not effective on small data sets 65 validate large data sets 65 file types 18 files, data 18 filter Active 85 change settings 96 deactivate 87 hide rows 92 inverted 85 new settings 96 quick 92 remove 87 results 85 settings, distribute confidence indicators 46 filters understanding descriptive information 37 filters tab 85 fragment ions 150 A, B, and C 109, 150 distribution 17 fragment match 115

G

getting a license viii GO Annotation NCBI, using 126 GO Annotation SwissProt, using 127 graphical views, isotope and chromatogram 77 grouping quantitation report, protein grouping is turned off 98 search results report, protein grouping 98

H

height value 72, 115 how to use GO Annotation NCBI 126 GO Annotation SwissProt 127 Metadata Table NCBI 128 Metadata Table SwissProt 129

icon sizes 28 ImageQuest, getting a license viii importing chemical modifications 142 InforSense Protein Annotation 124 Virtual Machine (VM) 23, 75 workflow discussion 124 workflow documentation, complete set 76 workflows, compatibility caveat 124 InforSense Protein Annotation compatible databases 75, 124 integrate data 23 join databases 23 license x using 125 input files 18 instructions to create a quantitation method 69 integrate automatically 115 data, InforSense Protein Annotation tasks 23 inverted filter example 48, 85, 86 invoke InforSense 75 ion trap mass spectrometers, SEQUEST 17 isotope pattern chart view 113 iTRAQ 4plex 67 iTRAQ 4plex method 68 iTRAQ 8plex 67 iTRAQ 8plex method 68 iTRAQ quantitation 20

J

job queue controls and status 74 description 73 introduction 26 start workflow 56 join databases, InforSense Protein 23

L

layout menu 82 license getting viii getting, quick access 10 InforSense x other x to enter x list of cleavage properties 149 low-abundance proteins 17

Μ

Mascot high level of confidence with multiple peptides 16 peptide mass fingerprint 16 Mascot search algorithm 16 mass tags 69 mass values amino acid 147 list 147 match likely proteins 77 measure and report 67 Meta Table, using SwissProt 129 Metadata Table NCBI, using 128 missed cleavages, defining in SEQUEST Search Wizard 35 modifications adding 139 adding amino acid 141 deleting 140 deleting amino acid 142 importing UNIMOD information from a local file 142 importing UNIMOD information from the web 142 setting 139 updating 140 values 148 modify a FASTA database file 62, 144 mouse, range definition 31 multiconsensus report creating and viewing 41 opening 41

Ν

node options workflow 57 nodes workflow 51

0

open one or more reports 27 open .srf 59 open a report file menu option 59 job queue page option 74 open option 26 open Proteome Discoverer workflow 56 open report quick access 9 output files 18 overview InforSense Protein Annotation 23, 75 process and analyze raw MS data 14 Qual Browser 22 quantitation 20 search algorithms 14

P

parameters 29 peak list 11 magnify 72, 115 peak area automatically calculated 72, 115 peptide access to the protein page 39 candidates 17 consensus page 107 consensus view 108, 110, 111 graphical view of distribution 103 identification details 107 individual results 112 intensity display 72, 115 isotope pattern of the selected precursor 106 quantitation 70 ratios 8 shortcut menu 45 show consensus view 108 show top matches only 45 view 60 view the fragment match spectrum 106 view the spectrum 106

peptide confidence decoy database option 35 understanding descriptive information 37 Peptide Confidence page 95 peptide confidence settings, change the default 46, 96 peptide ID search 93 peptide identification view 110 peptide sequence match grid 111 peptides understanding descriptive information 37 percent converage combined 41 PMF, Mascot 16 precursor detailed perspective of the MS scan 7 experimentally determined mass 113 precursor view 113 probability-based scoring SEQUEST 17 ZCore 17 process raw MS data overview 14 processing menu 29 protein add reference 64 databases 17 grouping 98 view 60 protein identification details 98 how to quantify 67 increasing confidence with reverse database search 17 overview 11 SEQUEST 17 protein quantitation 69 protein sequence coverage 41 protein table 39 proteins understanding descriptive information 37

0

Qual Browser about 22 using 72

quantitation 20 basic feature 67 iTRAQ 20 menu option choices 8 overview 20 peptide ratios 20 quantitation spectrum 21 show report intensities 21 spectrum 8 TMT tagging 18 quantitation methods edit 68 quick access 9 select 67 quantitation overview 58 quantitization node, in the workflow 69 queue list checking 60 deleting search items 61 quick access configuration search programs 10 current job status 9 FASTA 10 InforSense 10 license status 10 QualBrowser 10 quantitation methods 9 quantitation, edit method, edit method 8 quantitation, reporter intensities 8 quantitation, show peptide ratios 8 quantitation, show spectrum 8 Workflow Editor 8 quick filters display 92 shortcut menu 92 show filtered and unfiltered rows 92

R

ratio calculation 69 ratio reporting 69 raw data 11 results, reports, and analysis 18 reagents, enzymes 149 recalculate new false discovery rate 96 recalculate new filter settings 96 red bars, chromatogram 100 report close 59 save 59 Report Item Distribution graph 103 reporter intensities 8 reporter ion based quantitation 67 reporter ions quantitizer node about iTRAQ 20 show peptide ratios 20 show quantitation spectrum 21 show reporter intensities, 21 reporting data, introduction 18 reports adding columns 79 create 77 export 77 fragment 115 open 27 peptides 117 removing columns 79 save and close 28 results interpret the search overview 14 reports and analysis 18 validated 67 retention time 100, 103 row hide with quick filters 92

S

save a search workflow 56 save and close reports 28 save Proteome Discoverer workflow 56 scoring 17 search .msf (mass spectrum search files) 18 .srf (unified search files) 18 checking status of 60 discussion of analysis 18 file menu to import results 5 search algorithms Mascot 16 ZCore 16 search engine 29 Search Input page 112 search parameters 29 search progress in percent description 73 how to 60search queue description 73 jobs 9 search report menu access report options 36 table of features 6

search wizards discussion 29 process diagram 30 to use on a raw file 30 select chemical modifications 29 database 29 search engine 29 search parameters 29 SEQUEST ETD, ECD, and CID data 17 false discovery rates 17 ion trap mass spectrometers 17 probability-based scoring 17 set the database 29 set the search parameters 29 shortcut keys, creating 133 shortcut menu peptide 45 quick filters 92 shortcut menus 4 show quantitation spectrum 70 size changes 28 sort and filter 77 start workflow 56

T

tabs filters 37 peptide confidence 37 peptides 37 proteins 37 summary 37 Terminal side C- 109, 150 N- 109, 150 TMT quantitation 18 tagging 18 toolbar customizing 131 customizing layout 132 display 135 tools FASTA Database Utilities 62, 64 InforSense 75 open Qual Browser 72 tooltips customizing 136 hiding 136 total fraction 17

U

UNIMOD, importing data of 142 user interface change options 28

V

validation of quantitation results 67 view peptide consensus 108, 110, 111 peptide consensus page 107 protein page 60 view size 28

W

wizards four key settings 29 raw file 30workflow create a new Proteome Discoverer search 53 develop a specific template 50 Discoverer - align 53 Discoverer - blue box edge 52 Discoverer - open 56 Discoverer - rawfile 53 Discoverer - red box edge 52 InforSense - metadata table NCBI 128 InforSense - metadata table NCBI (how to use) 125 InforSense - metadata table SwissProt 129 InforSense - metadata table SwissProt (how to use) 125 InforSense - NCBI 126 InforSense - NCBI (how to use) 125 InforSense - SwissProt 127 InforSense - SwissProt (how to use) 125 InforSense discussion 124 Proteome Discoverer nodes 57 quantitization node 69 save a search in Proteome Discoverer 56 start in Proteome Discoverer 56 Workflow Editor auto layout 53 cautionary note - learn workflow node functions 50 introduction to node selections 51 join two nodes 52 learn 52 menu 49 with respect to all Discoverer processes 19 working with InforSense Protein Annotation 125 workspace 51

X

XCorr counts the number of fragment ions 44 report table 117 XIC extracted ion chromatogram 98 XML, creating reports 18

Y

yellow range, chromatogram view 100

Ζ

ZCore ETD and ECD data 16 false positive rate 16 Index